OpenSSL in Postfix

Viktor Dukhovni
Credits: Lutz Janicke, Wietse Venema, ...

https://www.postfix.org/TLS_README.html#credits

Structure of this talk

e Highlight use cases in which Postfix takes advantage of OpenSSL

o Describe briefly the problem solved
o The Postfix code is written with care, and generally well commented

e Postfix is a rich source of example real-world code using OpenSSL
https://qgithub.com/vdukhovni/postfix/tree/master/postfix/src/tls/
Focus is TLS and X.509 authentication, not data at rest cryptography
The meat of the content is behind links to the underlying code
No time for code walk-through during the talk
m Your homework is to open the links and study the code

(@)
(@)
(@)
(@)

https://github.com/vdukhovni/postfix/tree/master/postfix/src/tls/

BACKGROUND

Some SMTP and Postfix basics

Complex SMTP TLS policy landscape

e Transport security policy is hop-by-hop and largely up to the sending client
o Some mail sent in the clear when STARTTLS is neither required nor offered (or fails)

e SMTP TLS is mostly opportunistic
o Typically unauthenticated (client ignores server's certificate) TLS
m Protects only against passive monitoring (wiretaps)
o Some reasons why in REC 7672 Section 1.3
o End-to-end (E2E) message encryption is mostly impractical:
m Hampers blocking email abuse
m Complicates search, archiving, key rotation, usability

https://www.postfix.org/TLS_README.html#client_tls_limits
https://datatracker.ietf.org/doc/html/rfc7435
https://datatracker.ietf.org/doc/html/rfc7672#section-1.3

Active (MiTM) attack resistance

e Requires that client:
o Knows that messages to a particular destination MUST use TLS
o Knows how server MUST be authenticated
o This needs to be downgrade resistant

e Possible with:
o DANE (4.2+ million domains, downgrade-resistant via DNSSEC: 24 million domains)
o MTA-STS (mostly between the largest email providers, weaker downgrade resistance)
o Manual policy for business partners or other important peer domains
o Possibly per-message metadata (REQUIRETLS support due soon in Postfix 3.11)

https://datatracker.ietf.org/doc/html/rfc7672
https://datatracker.ietf.org/doc/html/rfc8461
https://datatracker.ietf.org/doc/html/rfc8689

Almost all Gmail outbound traffic is TLS-protected

Outbound email encryption: 98%

Start 9 12/31/2012 End ® 9/22/2025

= Outbound emails

100%
90%
80%
70%
60%
50%
40%
30%
20%

10%

0
ga/ﬁ 01, 2014 Jan 01, 2016 Jan 01, 2018 Jan 01, 2020 Jan 01, 2022 Jan 01, 2024 Jul 01,
2025

https://transparencyreport.google.com/safer-email/overview

Practically all Gmail inbound traffic is TLS-protected

Inbound email encryption: 100%

Start (9 [12/31/2012 End) 9/22/2025

= Inbound emails

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0
9a/|"’1 01, 2014 Jan 01, 2016 Jan 01, 2018 Jan 01, 2020 Jan 01, 2022 Jan 01, 2024 Jul 01,
2025

https://transparencyreport.google.com/safer-email/overview

Brief history of Postfix

e After rich history of Sendmail security issues, ...
o Alpha: 1998/01/05 (for select group of testers)
o Public beta: 1999/01/22
o 1.0:2001/02/28
O

Wietse merged TLS support: 2005/07

Based on patch series by Lutz Janicke, starting 1999/03/29 with OpenSSL 0.9.2!
25+ years of solid examples of OpenSSL in action

e Postfix 3.11 dev: ~144k LOC (cf. OpenSSL ~450k)
o ~13k TLS-related LOC

o Total of ~6 CVEs in project history

Wietse's philosophy

“I learned to program carefully for selfish reasons. | did not want to sleep on
the floor next to my physics experiments”. Wietse

"people expect that my programs solve more problems than they cause. [It's]
something close to perfection. ... | am preparing an incomplete system for release
[to experimentally determine people's needs]. That's why | call it a beta. It has
nothing to do with software quality." Wietse

e Strong commitment to backwards compatibility, decade or more old
configurations typically work unchanged today.

https://www.usenix.org/legacy/events/lisa10/tech/slides/venema.pdf
https://www.postfix.org/developer.199810.html

My work on Postfix (and OpenSSL)

e Somewhat late to the party, I'm a Postfix user since 2001/05
o First contributed patch merged 2001/07
e Google IPO ran on Postfix servers
e Refactored Postfix TLS stack in 2006 and its primary maintainer since
e Implemented DANE support in 2013-2015 and authored DANE for SMTP
RFCs

e Contributed DANE support to OpenSSL 1.1.0 in 2016 and joined project
o Refactored OpenSSL X.509 validation, still focused on that part of the code base

Postfix multi-process architecture

transport ‘aliases . foward

Ol

canonicall virtual
RBL

UUCP, LMTP
etc.

Legend: Lookupitante - Controlled by Postfix master daemon

https://upload.wikimedia.org/wikipedia/commons/5/53/Architecture_of_the_software_Postfix_%28Mail_Transfer_Agent%29.png

Postfix multi-process architecture

e The master(8) server manages per-service worker processes

o Workers each handle up to ~100 requests (connections?) and exit

o New workers are spawned when a request comes in while all workers are busy
o Afew core workers (gmgr, tlsmgr) run indefinitely

o Worker processes drop root privileges, trust only their own configuration

smtpd(8) SMTP servers receive incoming mail

smtp(8) SMTP clients deliver outgoing mail

tlsmgr(8) stores TLS session tickets for SMTP clients

tlsmgr(8) stores/rotates session ticket keys for SMTP servers
tisproxy(8) supports TLS connection reuse or (cleartext end) handoff

https://www.postfix.org/OVERVIEW.html

Postfix SMTP server TLS

Server operating modes

e Inbound Message Transfer Agent (MTA):
o Port 25: mail from remote MTAs, optional STARTTLS
e Outbound Message Submission Agent (MSA):

o Port 587: outbound mail from authenticated users, mandatory STARTTLS
o Port 465: outbound mail, implicit TLS

e TLS settings can vary between MTA and MSA
e Optionally requests client certs to authenticate trusted clients (SMTP VPN?)
o Mostly MSA SMTP relay access control via key fingerprint
m Rarely by valid signature from a trusted CA

m Allowed to originate outbound email?
m Exempted from anti-spam filters?

Explicit OpenSSL library initialisation

e tls library_init()avoids system-wide openssl.cnf by default
o Called once in each process, prior to any use of OpenSSL
o Optional custom or default config file, and application name
o Largely unaffected by RedHat crypto policy (not well suited to opportunistic TLS)

e Relevant APlIs:

OPENSSL_INIT _new()
OPENSSL_INIT_set_config_file_flags()
OPENSSL_INIT set config_filename()
OPENSSL_INIT_set_config_appname()
OPENSSL init_ssl()

OPENSSL_INIT free()

o o0 O O O O

https://github.com/vdukhovni/postfix/blob/e66967d164143e028f8c851a0c636bc685af7907/postfix/src/tls/tls_misc.c#L711-L821

SSL_CTX construction

e tls server_init()
o Calls library version check (warning if run-time version too different)
o Creates primary SSL_CTX object and twin for SNI

o Applies operator-specified min/max protocol
m Was once SSL_OP_NO_SSLvV3, ... but experience with Postfix suggested a
better way that made it into OpenSSL

o Arranges to tag SSL handles with application data

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_server.c#L390-L816

SSL_CTX construction

e tls server_init()...
o Defaults security level to 0 (opportunistic TLS)
o Turns off truncation detection (SSL_OP_IGNORE_UNEXPECTED_EOF)

o Sets up optional session caching
e APIs:
SSL_get_ex_new_index(),
SSL_CTX_set_options(),
SSL_CTX_set_min_proto_version(),
SSL_CTX_set_security_level()

O O O O

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_server.c#L390-L816

Server SSL_CTX

e tls server_init()...
o Sets up stateless resumption key rollover

Enables server to client REC 7250 raw public key (RPK) support
Loads server certificate chains
Optionally, configures key exchange supported "groups”
Configures optional trust anchors (CAfile, CApath)
Configures optional client certificate solicitation

m CA hints, verify callback

O O O O O

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_server.c#L390-L816
https://datatracker.ietf.org/doc/html/rfc7250

Optional |loading of trust anchors (CAfile, CApath)

e Only when client certificates are used and rely on CA trust!
o Postfix discourages relying on CAs for validation of client certificates
m Server operator issues own certificates to "known" clients
o Instead, ACL files with public key (or else certificate) fingerprints
o No support for or need for CRLs, just prune stale ACL entries
o Usual system-wide WebPKI CAs not loaded by default

e APIs:

o SSL _CTX load_verify locations()
o SSL _CTX set default_verify paths()

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_certkey.c#L502-L533

Loading of server's own certificate chain(s)

e Prefers key + chain in a single file, and loads these atomically
o File opened just once to read both key and cert chain when same name is used for both
o Postfix-specific PEM multi-chain format (underlying parser)
m Sequence of (key1, cert1, issuer certs ...), (key2, cert2, issuer certs ...), ...
m Also used with SNI key/value tables
m Orordered list of files one or more per algorithm
o Legacy support for up to three separate key and cert+chain files,
m Nominally for DSA, RSA and ECDSA, but really any three distinct algorithms

o APIs:
o SSL_CTX use_ PrivateKey file(), SSL_CTX use_certificate_chain_file(),
SSL_CTX check_private key()
o PEM read_bio(), d2i_PrivateKey(), d2i PKCS8 PRIV_KEY_INFO(), d2i_X509()

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_certkey.c#L582-L612
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_certkey.c#L458-L482
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_certkey.c#L344-L378
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_certkey.c#L614-L633
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_certkey.c#L535-L578

Multiple server names: SNI-specific chain(s)

e Accessed via indexed key value tables (LMDB, ...)
e Value is a PEM blob with one or more (key, cert, issuers), ... sequences
e Source format is a text table with filenames:

namel.com filel.pem, file2.penm,
name2.net file3.pem,

e postmap -F converts source form to key/value tables
o Files concatenated and copied to table value
o Source files and tables root-readable only
o Tables opened before dropping privileges

SNI processing

e SMTP server opens tables before dropping privs
o Reqisters SNI callback
o Lookups happen after privs dropped in the SNI callback,
m Default key/chain used if no SNI match
e HTTPS servers may want to be more strict (DNS rebinding)
m Result loaded into the SNI SSL_CTX
m Server workers are single-threaded, so no concurrency concerns
e APIs:
o SSL_CTX set tlsext servername_callback()
o SSL_CTX set tlsext servername_arg()
o SSL_get servername()
o SSL set SSL_CTX()

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_misc.c#L1315-L1318
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_misc.c#L850-L921

Requesting client certificates

e Typically optional (smtpd_tls_ask_ccert)
o Clients that don't present certs don't get special access
e Can be required (smtpd_tls_req_ccert)
o Sadly, also requires that the certificate be issued by a trusted CA
o Rarely used legacy feature
e Set up verification policy and callback
o Callback never aborts handshake, graceful SMTP disconnect, your needs may vary!

e APIs:

SSL_CTX set_verify()
SSL_load_client CA _file()
SSL_CTX set_client_CA_list()
SSL_dup_CA list()

o O O O

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_server.c#L704-L751
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_verify.c#L161-L215
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/smtpd/smtpd.c#L5345-L5364

Session tickets (resumption PSKs)

e RFC 5077 session ticket (typical format):

struct {
opaque key_name[16]; // Supports key rollover
opaque iv[16]; // Fresh for each ticket
opaque encrypted_state<0..2%16-1>; // Payload
opaque mac[32]; // HMAC-SHA256 & similar
} ticket;

Internal to server, secret (name, block cipher key, HMAC key) triples
OpenSSL default: random key, fixed for server process lifetime

Postfix uses multiple ephemeral processes, need persistent shared keys
Unchanging shared key risks loss of forward secrecy

https://datatracker.ietf.org/doc/html/rfc5077#section-4

Key rollover

Server needs only a two-slot cache with an active and previous key

The active key encrypts sent tickets and decrypts received tickets

The previous key is used to decrypt only, enabling non-disruptive rollover
The "name” in the client's ticket determines which key to apply

The MAC key handles tamper-proofing

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_scache.c#L568-L589

Key rollover

e Server callback registered via SSL_CTX_set_tlsext_ticket_key_evp_ch()

o O O O O

Creates new tickets
Decrypts received tickets (indicating whether to issue a replacement or not)
Postfix always allows reuse of unexpired tickets
When current active key expires, server requests the active key (null name) from tismgr
When receiving a ticket with an unknown name, request that name from tismgr
m This might be the newest active key just minted by a peer server
m Or an existing previous key just learned by a fresh server receiving an older ticket
m Key expiration time determines which of the two key slots is chosen

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_server.c#L311-L346

TODO: Someday, key rollover in OpenSSL?

e Non-trivial:

o Performant thread safety?
m Lockless if suitable key known in current thread?
m Are keys refreshed in the background?

o Distributed (multi-process and/or multi node) variant of tismgr service
m Is there an existing protocol for this?
m What 3rd-party key management systems participate?
|

Raw Public Keys (RFC7250)

Server certificate message is just a DER SubjectPublicKeylnfo (X.509 SPKI)
Used when enabled by the server and client indicates support
Other clients continue to receive X.509 certificates
The server is configured with a private key + certificate as usual
o The RPK is extracted from the certificate (can be minimal self-signed if for RPK-only)

Servers can also solicit RPKs from clients

o When server access control is based on just the client's public key and not its cert
o Optionally enabled in Postfix, X.509 always also accepted

APIs:

o SSL_CTX_set1_server_cert_type(), SSL_set1_server_cert_type()
o SSL_CTX_set1_client_cert_type(), SSL_set1_client_cert_type()

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_misc.c#L1816-L1837
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_misc.c#L1793-L1814

Key exchange (supported groups)

e Postfix has legacy code for explicit server DH groups
o auto-negotiation strongly recommended
e Explicit EC curves no longer supported
e With OpenSSL 3.5 changes for PQC, recommend to use default groups
o Some risk of problems with larger TLS client hello
m Fixed at originally reported boeing.com
o Else customise via an openssl.cnffile
m Avoid application code to set supported groups

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_dh.c#L213-L233

PQC supported groups

Client sends both a hybrid X25519 + MLKEM768 and an X25519 keyshare
Server prefers the former, requesting a fresh client hello if supported but not sent

Groups = ?*X25519MLKEM768 / ?*X25519:?secp256r1 / ?X448:?secp384r1:?secp521r1 / ?ffdhe2048:?ffdhe3672

e Possible client-side "boeing.com" work-around:
o Support, but don't automatically send keyshare for X25519MLKEM768

Groups = ?X25519MLKEM768 / ?*X25519:?secp256r1 / ?X448:?secp384r1:?secp521r1 / ?ffdhe2048:?ffdhe3072

e APIs (to NOT use directly):
o SSL_CTX set1 _curves_list()
o Deprecated since 3.0: SSL_CTX set tmp_dh(), SSL_CTX set tmp_ecdh()

More TLS settings?

e Never wrote Postfix code to customise supported signature algorithms
m Or TLS 1.3 symmetric ciphers, ...
o But easily set in a dedicated (Postfix-only) config file
o Set preference order of available server certs

SignatureAlgorithms = mldsa65:ecdsa_secp256r1_sha256

o When requesting client certs, may need to also set ClientSignatureAlgorithms
m Above server setting rules out RSA certs from clients,
m Alonger list in SignatureAlgorithms may serve both needs

External session cache

e Still supports optional stateful session cache

Mostly obsoleted by session tickets

o External, shared via tlsmgr

o Internal cache has just one slot

o No "remove" callbacks, tlsmgr schedules its own removal of stale sessions

e APIs:

SSL_CTX set_session_id_context()
SSL_CTX sess_set cache_size()
SSL_CTX set _session_cache _mode()
SSL_CTX sess_set new_cb()

SSL _CTX sess_set get cb()
SSL_CTX set_timeout()

(@)

o O O O O O

Postfix SMTP server TLS

TLS connection setup

tls_server_start()

e Unexpected buffered data is flushed before initiating TLS handshake
o Multi-protocol STARTTLS vulnerability discovered by Wietse

Creates SSL handle, configures TLS 1.2 ciphers, adds application context
Security level raised to 1 when client certificates are required

Optionally enables client to server RPK (in lieu of client "certs")

SSL_set fd() called with non-blocking socket

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_server.c#L823C17-L959
https://www.postfix.org/CVE-2011-0411.html

tls_server_start()...

e |Initiates SSL_accept() via tls_bio() I/O handler

Also used by SSL_connect(), and data reads and writes

IMPORTANT: clears error stack

Deals with WANT_READ, WANT_WRITE, timeouts and TLS errors

Per 1/O timeouts (default) and (under stress) deadline timeouts to receive a command or data
m Postfix has its own "vstream" buffering 1/0 akin to OpenSSL BIOs

o O O O

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_server.c#L823C17-L959
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_bio_ops.c#L150-L294
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_bio_ops.c#L202

Post-handshake tasks

e Collect and log handshake properties
o Client certificate subject, issuer and fingerprints (cert and key)
m or perhaps RPK fingerprint
o Protocol, cipher, certificate type, key exchange type, MAC

Anonymous TLS connection established
from mail.dnswl.org[130.255.78.51]:
TLSv1.3 with cipher TLS_AES_256_GCM_SHA384 (256/256 bits)
key-exchange X25519MLKEM768
server-signature ML-DSA-65 (raw public key)

e Subsequently available for access control decisions
o Issuer and subject exposed only if verified

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_server.c#L963-L1101
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_misc.c#L1234-L1295

SMTP server highlights

Explicit initialisation

Avoids WeDbPKI trust anchors

Advanced certificate configuration

Resumption key rollover

Raw public key support

Dedicated config file for non-default Groups, SignatureAlgorithms, ...
Non-blocking 1/0

Reflection (logging, ...)

Postfix SMTP client TLS

SMTP Client TLS security levels (unauthenticatd)

e none:no TLS
e may: Unauthenticated opportunistic TLS
e encrypt: Mandatory unauthenticated TLS

https://www.postfix.org/TLS_README.html#client_tls_none
https://www.postfix.org/TLS_README.html#client_tls_may
https://www.postfix.org/TLS_README.html#client_tls_encrypt

SMTP Client TLS security levels (authenticated)

e fingerprint: Pinned peer certificate or public key
o via locally synthesised DANE TLSA records
e dane: Opportunistic DANE TLS
o when usable DNSSEC TLSA records are found, else "may"
e dane-only: Mandatory DANE TLS, avoids non-conformant MX hosts
e secure: WebPKI authentication with configurable hostname checks

o Supports per-destination trust-anchor certs or public keys (as PEM files)
m via locally synthesised DANE TLSA records

https://www.postfix.org/TLS_README.html#client_tls_fprint
https://www.postfix.org/TLS_README.html#client_tls_dane
https://www.postfix.org/TLS_README.html#client_tls_dane
https://www.postfix.org/TLS_README.html#client_tls_secure

Security policy

e Global default for most domains is "may" or "dane™
e Per destination policy table

e Per-message TLS policy:
o Supports TLS-Required: no header, for error notices, ...
o Supports (3.11 dev snapshots) ESMTP REQUIRETLS option from sender

https://www.postfix.org/TLS_README.html#client_tls_policy
https://datatracker.ietf.org/doc/html/rfc8689#name-the-tls-required-header-fie
https://datatracker.ietf.org/doc/html/rfc8689

Security policy...

e MTA operator (Postfix user) is presumed to be technically savvy, has many

more knobs to tweak than typical TLS user:
o 37 SMTP client settings
o 31 SMTP server settings
o 28 underlying TLS-library settings

Postfix SMTP client TLS

Initialisation

Key differences from server

o tls_client_init() similar to server, but
e Enables DANE support

o Optionally used in subsequent connections

e Justone SSL CTX, no need for SNI-twin
e SNI name sent with DANE and MTA-STS

o Otherwise defaults off, but can be set to "hostname" (i.e. use name of MX host)
e Enables client-to-server RPK when client cert configured

e Client-side cache is always stateful
o External only, shared via tismgr(8)

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_client.c#L680-L963

DANE in OpenSSL

e OpenSSL does not do the DNS lookups
Providing the relevant TLSA records is application responsibility
Feature, because TLSA records don't have to come from DNS
TLSA records also useful to express various local policies
Not used that way in Postfix, but can augment rather than replace WebPKI
m Usage PKIX-TA(O) requires a WebPKI chain with a matching CA certificate or key
m Usage PKIX-EE(1) requires a WebPKI chain with a matching EE certificate or key
o DANE is only OpenSSL mechanism to authenticate peer raw public keys
m Bidirectional RPKs can be a good choice for fixed server-to-server mutual TLS

e APIs:
o SSL_dane_enable(),
o SSL_dane_set_flags(),
o SSL_dane_tlsa_add()

O O O O

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_dane.c#L563-L612
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_dane.c#L807-L848
https://www.rfc-editor.org/rfc/rfc6698#section-2.1.1
https://www.rfc-editor.org/rfc/rfc7218.html#section-2.1
https://www.rfc-editor.org/rfc/rfc6698#section-2.1.1
https://www.rfc-editor.org/rfc/rfc7218.html#section-2.1

Postfix SMTP client TLS

Connection setup

Client chooses security policy

e tIs client_start() security policies
o Unauthenticated: encrypt
m Server certificate is ignored, TLS <= 1.2 prefers anonDH ciphers
o Direct pin: fingerprint, dane
m When matching only server's key, enables server to client RPK
o Server managed pin: dane
o WeDbPKI: secure
m Multiple names or subdomain patterns can match the server cert
m Per-destination trust-anchors via synthetic DANE-TA(2) TLSA records

https://www.postfix.org/TLS_README.html#client_tls_limits
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_client.c#L970-L1326

Verification of server certificate

e \Verification setup in tls_auth_enable()

e \erification callback always continues handshake
o Authentication failure checked after, with graceful disconnect (QUIT) at application layer

e Resumed session verification status in SSL_get_verify_result()
o But not certificate chain details
o Care to distinquish between trust chain verification and hosthame mismatch
m Prioritise storing other errors over hostname mismatch
m Then report "Untrusted" only if not hosthame mismatch
o This is because untrusted sessions may also be cached

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_client.c#L549-L676
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_verify.c#L123-L215
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_verify.c#L123-L157
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_client.c#L366-L367

Client audit trail

e Handshake outcome logging:

Untrusted TLS connection established to aspmx.l.google.com[64.233.170.26]:25:
TLSv1.3 with cipher TLS_AES_256_GCM_SHA384 (256/256 bits)
key-exchange X25519MLKEM768
server-signature ECDSA (prime256v1)
server-digest SHA256

92616901F9D: to=<openssl-users@openssl.org>,
relay=aspmx.l.google.com[64.233.170.26] :25,
delay=4.6, delays=0.03/0.01/2.8/1.7,

tls=may, dsn=2.0.0, status=sent
(250 2.0.0 OK 1758854597 d2ela72fcca58-78102be944esi1727982b3a.776 - gsmtp)

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_misc.c#L1234-L1295

Session caching

e Avoids insecure reuse
o Two domains might share the same MX host, but have different security policies
Caching by either or both of hostname and IP address is not safe
Even behind the same load balanced |IP address session caches may be disjoint
So cache key includes ehlo response hostname, found to correlate with shared state

o O O O

e Shared via the tlsmgr(8)

o Store/Lookup by above key, then (de)serialised via {d2i,i2d} SESSION().
o Just one slot per lookup key, no support for multiple concurrent tickets in client or server
o Assume that servers don't enforce single-use sessions.

m Tracking of client is not a concern for infrastructure such as MTAs.

Plus security level, cipher selection, protocol range, name matching, per-message policy, ...

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_fprint.c#L239-L337

Questions?

