
OpenSSL in Postfix
Viktor Dukhovni

Credits: Lutz Jänicke, Wietse Venema, …

https://www.postfix.org/TLS_README.html#credits

Structure of this talk

● Highlight use cases in which Postfix takes advantage of OpenSSL
○ Describe briefly the problem solved
○ The Postfix code is written with care, and generally well commented

● Postfix is a rich source of example real-world code using OpenSSL
○ https://github.com/vdukhovni/postfix/tree/master/postfix/src/tls/
○ Focus is TLS and X.509 authentication, not data at rest cryptography
○ The meat of the content is behind links to the underlying code
○ No time for code walk-through during the talk

■ Your homework is to open the links and study the code

https://github.com/vdukhovni/postfix/tree/master/postfix/src/tls/

BACKGROUND
Some SMTP and Postfix basics

Complex SMTP TLS policy landscape

● Transport security policy is hop-by-hop and largely up to the sending client
○ Some mail sent in the clear when STARTTLS is neither required nor offered (or fails)

● SMTP TLS is mostly opportunistic
○ Typically unauthenticated (client ignores server's certificate) TLS

■ Protects only against passive monitoring (wiretaps)
○ Some reasons why in RFC 7672 Section 1.3
○ End-to-end (E2E) message encryption is mostly impractical:

■ Hampers blocking email abuse
■ Complicates search, archiving, key rotation, usability

https://www.postfix.org/TLS_README.html#client_tls_limits
https://datatracker.ietf.org/doc/html/rfc7435
https://datatracker.ietf.org/doc/html/rfc7672#section-1.3

Active (MiTM) attack resistance

● Requires that client:
○ Knows that messages to a particular destination MUST use TLS
○ Knows how server MUST be authenticated
○ This needs to be downgrade resistant

● Possible with:
○ DANE (4.2+ million domains, downgrade-resistant via DNSSEC: 24 million domains)
○ MTA-STS (mostly between the largest email providers, weaker downgrade resistance)
○ Manual policy for business partners or other important peer domains
○ Possibly per-message metadata (REQUIRETLS support due soon in Postfix 3.11)

https://datatracker.ietf.org/doc/html/rfc7672
https://datatracker.ietf.org/doc/html/rfc8461
https://datatracker.ietf.org/doc/html/rfc8689

Almost all Gmail outbound traffic is TLS-protected

https://transparencyreport.google.com/safer-email/overview

Practically all Gmail inbound traffic is TLS-protected

https://transparencyreport.google.com/safer-email/overview

Brief history of Postfix

● After rich history of Sendmail security issues, …
○ Alpha: 1998/01/05 (for select group of testers)
○ Public beta: 1999/01/22
○ 1.0: 2001/02/28
○ Wietse merged TLS support: 2005/07

■ Based on patch series by Lutz Jänicke, starting 1999/03/29 with OpenSSL 0.9.2!
● 25+ years of solid examples of OpenSSL in action
● Postfix 3.11 dev: ~144k LOC (cf. OpenSSL ~450k)

○ ~13k TLS-related LOC
○ Total of ~6 CVEs in project history

Wietse's philosophy

“I learned to program carefully for selfish reasons. I did not want to sleep on
the floor next to my physics experiments”. Wietse

"people expect that my programs solve more problems than they cause. [It's]
something close to perfection. ... I am preparing an incomplete system for release
[to experimentally determine people's needs]. That's why I call it a beta. It has
nothing to do with software quality." Wietse

● Strong commitment to backwards compatibility, decade or more old
configurations typically work unchanged today.

https://www.usenix.org/legacy/events/lisa10/tech/slides/venema.pdf
https://www.postfix.org/developer.199810.html

My work on Postfix (and OpenSSL)

● Somewhat late to the party, I'm a Postfix user since 2001/05
○ First contributed patch merged 2001/07

● Google IPO ran on Postfix servers
● Refactored Postfix TLS stack in 2006 and its primary maintainer since
● Implemented DANE support in 2013–2015 and authored DANE for SMTP

RFCs
● Contributed DANE support to OpenSSL 1.1.0 in 2016 and joined project

○ Refactored OpenSSL X.509 validation, still focused on that part of the code base

Postfix multi-process architecture

https://upload.wikimedia.org/wikipedia/commons/5/53/Architecture_of_the_software_Postfix_%28Mail_Transfer_Agent%29.png

Postfix multi-process architecture

● The master(8) server manages per-service worker processes
○ Workers each handle up to ~100 requests (connections?) and exit
○ New workers are spawned when a request comes in while all workers are busy
○ A few core workers (qmgr, tlsmgr) run indefinitely
○ Worker processes drop root privileges, trust only their own configuration

● smtpd(8) SMTP servers receive incoming mail
● smtp(8) SMTP clients deliver outgoing mail
● tlsmgr(8) stores TLS session tickets for SMTP clients
● tlsmgr(8) stores/rotates session ticket keys for SMTP servers
● tlsproxy(8) supports TLS connection reuse or (cleartext end) handoff

https://www.postfix.org/OVERVIEW.html

Postfix SMTP server TLS

Server operating modes

● Inbound Message Transfer Agent (MTA):
○ Port 25: mail from remote MTAs, optional STARTTLS

● Outbound Message Submission Agent (MSA):
○ Port 587: outbound mail from authenticated users, mandatory STARTTLS
○ Port 465: outbound mail, implicit TLS

● TLS settings can vary between MTA and MSA
● Optionally requests client certs to authenticate trusted clients (SMTP VPN?)

○ Mostly MSA SMTP relay access control via key fingerprint
■ Rarely by valid signature from a trusted CA
■ Allowed to originate outbound email?
■ Exempted from anti-spam filters?

Explicit OpenSSL library initialisation

● tls_library_init() avoids system-wide openssl.cnf by default
○ Called once in each process, prior to any use of OpenSSL
○ Optional custom or default config file, and application name
○ Largely unaffected by RedHat crypto policy (not well suited to opportunistic TLS)

● Relevant APIs:
○ OPENSSL_INIT_new()
○ OPENSSL_INIT_set_config_file_flags()
○ OPENSSL_INIT_set_config_filename()
○ OPENSSL_INIT_set_config_appname()
○ OPENSSL_init_ssl()
○ OPENSSL_INIT_free()

https://github.com/vdukhovni/postfix/blob/e66967d164143e028f8c851a0c636bc685af7907/postfix/src/tls/tls_misc.c#L711-L821

SSL_CTX construction

● tls_server_init()
○ Calls library version check (warning if run-time version too different)
○ Creates primary SSL_CTX object and twin for SNI
○ Applies operator-specified min/max protocol

■ Was once SSL_OP_NO_SSLv3, … but experience with Postfix suggested a
better way that made it into OpenSSL

○ Arranges to tag SSL handles with application data

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_server.c#L390-L816

SSL_CTX construction

● tls_server_init()...
○ Defaults security level to 0 (opportunistic TLS)
○ Turns off truncation detection (SSL_OP_IGNORE_UNEXPECTED_EOF)
○ Sets up optional session caching

● APIs:
○ SSL_get_ex_new_index(),
○ SSL_CTX_set_options(),

○ SSL_CTX_set_min_proto_version(),

○ SSL_CTX_set_security_level()

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_server.c#L390-L816

Server SSL_CTX

● tls_server_init() …
○ Sets up stateless resumption key rollover
○ Enables server to client RFC 7250 raw public key (RPK) support
○ Loads server certificate chains
○ Optionally, configures key exchange supported "groups"
○ Configures optional trust anchors (CAfile, CApath)
○ Configures optional client certificate solicitation

■ CA hints, verify callback

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_server.c#L390-L816
https://datatracker.ietf.org/doc/html/rfc7250

Optional loading of trust anchors (CAfile, CApath)

● Only when client certificates are used and rely on CA trust!
○ Postfix discourages relying on CAs for validation of client certificates

■ Server operator issues own certificates to "known" clients
○ Instead, ACL files with public key (or else certificate) fingerprints
○ No support for or need for CRLs, just prune stale ACL entries
○ Usual system-wide WebPKI CAs not loaded by default

● APIs:
○ SSL_CTX_load_verify_locations()
○ SSL_CTX_set_default_verify_paths()

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_certkey.c#L502-L533

Loading of server's own certificate chain(s)

● Prefers key + chain in a single file, and loads these atomically
○ File opened just once to read both key and cert chain when same name is used for both
○ Postfix-specific PEM multi-chain format (underlying parser)

■ Sequence of (key1, cert1, issuer certs …), (key2, cert2, issuer certs …), …
■ Also used with SNI key/value tables
■ Or ordered list of files one or more per algorithm

○ Legacy support for up to three separate key and cert+chain files,
■ Nominally for DSA, RSA and ECDSA, but really any three distinct algorithms

● APIs:
○ SSL_CTX_use_PrivateKey_file(), SSL_CTX_use_certificate_chain_file(),

SSL_CTX_check_private_key()
○ PEM_read_bio(), d2i_PrivateKey(), d2i_PKCS8_PRIV_KEY_INFO(), d2i_X509()

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_certkey.c#L582-L612
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_certkey.c#L458-L482
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_certkey.c#L344-L378
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_certkey.c#L614-L633
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_certkey.c#L535-L578

Multiple server names: SNI-specific chain(s)

● Accessed via indexed key value tables (LMDB, …)
● Value is a PEM blob with one or more (key, cert, issuers), … sequences
● Source format is a text table with filenames:

name1.com file1.pem, file2.pem, …
name2.net file3.pem, …
…

● `postmap -F` converts source form to key/value tables
○ Files concatenated and copied to table value
○ Source files and tables root-readable only
○ Tables opened before dropping privileges

SNI processing

● SMTP server opens tables before dropping privs
○ Registers SNI callback
○ Lookups happen after privs dropped in the SNI callback,

■ Default key/chain used if no SNI match
● HTTPS servers may want to be more strict (DNS rebinding)

■ Result loaded into the SNI SSL_CTX
■ Server workers are single-threaded, so no concurrency concerns

● APIs:
○ SSL_CTX_set_tlsext_servername_callback()
○ SSL_CTX_set_tlsext_servername_arg()
○ SSL_get_servername()
○ SSL_set_SSL_CTX()

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_misc.c#L1315-L1318
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_misc.c#L850-L921

Requesting client certificates

● Typically optional (smtpd_tls_ask_ccert)
○ Clients that don't present certs don't get special access

● Can be required (smtpd_tls_req_ccert)
○ Sadly, also requires that the certificate be issued by a trusted CA
○ Rarely used legacy feature

● Set up verification policy and callback
○ Callback never aborts handshake, graceful SMTP disconnect, your needs may vary!

● APIs:
○ SSL_CTX_set_verify()
○ SSL_load_client_CA_file()
○ SSL_CTX_set_client_CA_list()
○ SSL_dup_CA_list()

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_server.c#L704-L751
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_verify.c#L161-L215
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/smtpd/smtpd.c#L5345-L5364

Session tickets (resumption PSKs)

● RFC 5077 session ticket (typical format):

 struct {
 opaque key_name[16]; // Supports key rollover
 opaque iv[16]; // Fresh for each ticket
 opaque encrypted_state<0..2^16-1>; // Payload
 opaque mac[32]; // HMAC-SHA256 & similar
 } ticket;

● Internal to server, secret (name, block cipher key, HMAC key) triples
● OpenSSL default: random key, fixed for server process lifetime
● Postfix uses multiple ephemeral processes, need persistent shared keys
● Unchanging shared key risks loss of forward secrecy

https://datatracker.ietf.org/doc/html/rfc5077#section-4

Key rollover

● Server needs only a two-slot cache with an active and previous key
● The active key encrypts sent tickets and decrypts received tickets
● The previous key is used to decrypt only, enabling non-disruptive rollover
● The "name" in the client's ticket determines which key to apply
● The MAC key handles tamper-proofing

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_scache.c#L568-L589

Key rollover

● Server callback registered via SSL_CTX_set_tlsext_ticket_key_evp_cb()
○ Creates new tickets
○ Decrypts received tickets (indicating whether to issue a replacement or not)
○ Postfix always allows reuse of unexpired tickets
○ When current active key expires, server requests the active key (null name) from tlsmgr
○ When receiving a ticket with an unknown name, request that name from tlsmgr

■ This might be the newest active key just minted by a peer server
■ Or an existing previous key just learned by a fresh server receiving an older ticket
■ Key expiration time determines which of the two key slots is chosen

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_server.c#L311-L346

TODO: Someday, key rollover in OpenSSL?

● Non-trivial:
○ Performant thread safety?

■ Lockless if suitable key known in current thread?
■ Are keys refreshed in the background?

○ Distributed (multi-process and/or multi node) variant of tlsmgr service
■ Is there an existing protocol for this?
■ What 3rd-party key management systems participate?
■ …

Raw Public Keys (RFC7250)

● Server certificate message is just a DER SubjectPublicKeyInfo (X.509 SPKI)
● Used when enabled by the server and client indicates support
● Other clients continue to receive X.509 certificates
● The server is configured with a private key + certificate as usual

○ The RPK is extracted from the certificate (can be minimal self-signed if for RPK-only)
● Servers can also solicit RPKs from clients

○ When server access control is based on just the client's public key and not its cert
○ Optionally enabled in Postfix, X.509 always also accepted

● APIs:
○ SSL_CTX_set1_server_cert_type(), SSL_set1_server_cert_type()
○ SSL_CTX_set1_client_cert_type(), SSL_set1_client_cert_type()

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_misc.c#L1816-L1837
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_misc.c#L1793-L1814

Key exchange (supported groups)

● Postfix has legacy code for explicit server DH groups
○ auto-negotiation strongly recommended

● Explicit EC curves no longer supported
● With OpenSSL 3.5 changes for PQC, recommend to use default groups

○ Some risk of problems with larger TLS client hello
■ Fixed at originally reported boeing.com

○ Else customise via an openssl.cnf file
■ Avoid application code to set supported groups

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_dh.c#L213-L233

PQC supported groups

● Client sends both a hybrid X25519 + MLKEM768 and an X25519 keyshare
● Server prefers the former, requesting a fresh client hello if supported but not sent

Groups = ?*X25519MLKEM768 / ?*X25519:?secp256r1 / ?X448:?secp384r1:?secp521r1 / ?ffdhe2048:?ffdhe3072

● Possible client-side "boeing.com" work-around:
○ Support, but don't automatically send keyshare for X25519MLKEM768

Groups = ?X25519MLKEM768 / ?*X25519:?secp256r1 / ?X448:?secp384r1:?secp521r1 / ?ffdhe2048:?ffdhe3072

● APIs (to NOT use directly):
○ SSL_CTX_set1_curves_list()
○ Deprecated since 3.0: SSL_CTX_set_tmp_dh(), SSL_CTX_set_tmp_ecdh()

More TLS settings?

● Never wrote Postfix code to customise supported signature algorithms
■ Or TLS 1.3 symmetric ciphers, …

○ But easily set in a dedicated (Postfix-only) config file
○ Set preference order of available server certs

SignatureAlgorithms = mldsa65:ecdsa_secp256r1_sha256

○ When requesting client certs, may need to also set ClientSignatureAlgorithms
■ Above server setting rules out RSA certs from clients,
■ A longer list in SignatureAlgorithms may serve both needs

External session cache

● Still supports optional stateful session cache
○ Mostly obsoleted by session tickets
○ External, shared via tlsmgr
○ Internal cache has just one slot
○ No "remove" callbacks, tlsmgr schedules its own removal of stale sessions

● APIs:
○ SSL_CTX_set_session_id_context()
○ SSL_CTX_sess_set_cache_size()
○ SSL_CTX_set_session_cache_mode()
○ SSL_CTX_sess_set_new_cb()
○ SSL_CTX_sess_set_get_cb()
○ SSL_CTX_set_timeout()

Postfix SMTP server TLS
TLS connection setup

tls_server_start()

● Unexpected buffered data is flushed before initiating TLS handshake
○ Multi-protocol STARTTLS vulnerability discovered by Wietse

● Creates SSL handle, configures TLS 1.2 ciphers, adds application context
● Security level raised to 1 when client certificates are required
● Optionally enables client to server RPK (in lieu of client "certs")
● SSL_set_fd() called with non-blocking socket

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_server.c#L823C17-L959
https://www.postfix.org/CVE-2011-0411.html

tls_server_start()...

● Initiates SSL_accept() via tls_bio() I/O handler
○ Also used by SSL_connect(), and data reads and writes
○ IMPORTANT: clears error stack
○ Deals with WANT_READ, WANT_WRITE, timeouts and TLS errors
○ Per I/O timeouts (default) and (under stress) deadline timeouts to receive a command or data

■ Postfix has its own "vstream" buffering I/O akin to OpenSSL BIOs

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_server.c#L823C17-L959
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_bio_ops.c#L150-L294
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_bio_ops.c#L202

Post-handshake tasks

● Collect and log handshake properties
○ Client certificate subject, issuer and fingerprints (cert and key)

■ or perhaps RPK fingerprint
○ Protocol, cipher, certificate type, key exchange type, MAC

Anonymous TLS connection established
 from mail.dnswl.org[130.255.78.51]:
 TLSv1.3 with cipher TLS_AES_256_GCM_SHA384 (256/256 bits)
 key-exchange X25519MLKEM768
 server-signature ML-DSA-65 (raw public key)

● Subsequently available for access control decisions
○ Issuer and subject exposed only if verified

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_server.c#L963-L1101
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_misc.c#L1234-L1295

SMTP server highlights

● Explicit initialisation
● Avoids WebPKI trust anchors
● Advanced certificate configuration
● Resumption key rollover
● Raw public key support
● Dedicated config file for non-default Groups, SignatureAlgorithms, …
● Non-blocking I/O
● Reflection (logging, …)

Postfix SMTP client TLS

SMTP Client TLS security levels (unauthenticatd)

● none: no TLS
● may: Unauthenticated opportunistic TLS
● encrypt: Mandatory unauthenticated TLS

https://www.postfix.org/TLS_README.html#client_tls_none
https://www.postfix.org/TLS_README.html#client_tls_may
https://www.postfix.org/TLS_README.html#client_tls_encrypt

SMTP Client TLS security levels (authenticated)

● fingerprint: Pinned peer certificate or public key
○ via locally synthesised DANE TLSA records

● dane: Opportunistic DANE TLS
○ when usable DNSSEC TLSA records are found, else "may"

● dane-only: Mandatory DANE TLS, avoids non-conformant MX hosts
● secure: WebPKI authentication with configurable hostname checks

○ Supports per-destination trust-anchor certs or public keys (as PEM files)
■ via locally synthesised DANE TLSA records

https://www.postfix.org/TLS_README.html#client_tls_fprint
https://www.postfix.org/TLS_README.html#client_tls_dane
https://www.postfix.org/TLS_README.html#client_tls_dane
https://www.postfix.org/TLS_README.html#client_tls_secure

Security policy

● Global default for most domains is "may" or "dane"
● Per destination policy table
● Per-message TLS policy:

○ Supports TLS-Required: no header, for error notices, …
○ Supports (3.11 dev snapshots) ESMTP REQUIRETLS option from sender

https://www.postfix.org/TLS_README.html#client_tls_policy
https://datatracker.ietf.org/doc/html/rfc8689#name-the-tls-required-header-fie
https://datatracker.ietf.org/doc/html/rfc8689

Security policy…

● MTA operator (Postfix user) is presumed to be technically savvy, has many
more knobs to tweak than typical TLS user:
○ 37 SMTP client settings
○ 31 SMTP server settings
○ 28 underlying TLS-library settings

Postfix SMTP client TLS
Initialisation

Key differences from server

● tls_client_init() similar to server, but
● Enables DANE support

○ Optionally used in subsequent connections
● Just one SSL_CTX, no need for SNI-twin
● SNI name sent with DANE and MTA-STS

○ Otherwise defaults off, but can be set to "hostname" (i.e. use name of MX host)
● Enables client-to-server RPK when client cert configured
● Client-side cache is always stateful

○ External only, shared via tlsmgr(8)

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_client.c#L680-L963

DANE in OpenSSL

● OpenSSL does not do the DNS lookups
○ Providing the relevant TLSA records is application responsibility
○ Feature, because TLSA records don't have to come from DNS
○ TLSA records also useful to express various local policies
○ Not used that way in Postfix, but can augment rather than replace WebPKI

■ Usage PKIX-TA(0) requires a WebPKI chain with a matching CA certificate or key
■ Usage PKIX-EE(1) requires a WebPKI chain with a matching EE certificate or key

○ DANE is only OpenSSL mechanism to authenticate peer raw public keys
■ Bidirectional RPKs can be a good choice for fixed server-to-server mutual TLS

● APIs:
○ SSL_dane_enable(),
○ SSL_dane_set_flags(),
○ SSL_dane_tlsa_add()

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_dane.c#L563-L612
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_dane.c#L807-L848
https://www.rfc-editor.org/rfc/rfc6698#section-2.1.1
https://www.rfc-editor.org/rfc/rfc7218.html#section-2.1
https://www.rfc-editor.org/rfc/rfc6698#section-2.1.1
https://www.rfc-editor.org/rfc/rfc7218.html#section-2.1

Postfix SMTP client TLS
Connection setup

Client chooses security policy

● tls_client_start() security policies
○ Unauthenticated: encrypt

■ Server certificate is ignored, TLS <= 1.2 prefers anonDH ciphers
○ Direct pin: fingerprint, dane

■ When matching only server's key, enables server to client RPK
○ Server managed pin: dane
○ WebPKI: secure

■ Multiple names or subdomain patterns can match the server cert
■ Per-destination trust-anchors via synthetic DANE-TA(2) TLSA records

https://www.postfix.org/TLS_README.html#client_tls_limits
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_client.c#L970-L1326

Verification of server certificate

● Verification setup in tls_auth_enable()
● Verification callback always continues handshake

○ Authentication failure checked after, with graceful disconnect (QUIT) at application layer
● Resumed session verification status in SSL_get_verify_result()

○ But not certificate chain details
○ Care to distinguish between trust chain verification and hostname mismatch

■ Prioritise storing other errors over hostname mismatch
■ Then report "Untrusted" only if not hostname mismatch

○ This is because untrusted sessions may also be cached

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_client.c#L549-L676
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_verify.c#L123-L215
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_verify.c#L123-L157
https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_client.c#L366-L367

Client audit trail

● Handshake outcome logging:

Untrusted TLS connection established to aspmx.l.google.com[64.233.170.26]:25:
 TLSv1.3 with cipher TLS_AES_256_GCM_SHA384 (256/256 bits)
 key-exchange X25519MLKEM768
 server-signature ECDSA (prime256v1)
 server-digest SHA256

92616901F9D: to=<openssl-users@openssl.org>,
 relay=aspmx.l.google.com[64.233.170.26]:25,
 delay=4.6, delays=0.03/0.01/2.8/1.7,
 tls=may, dsn=2.0.0, status=sent
 (250 2.0.0 OK 1758854597 d2e1a72fcca58-78102be944esi1727982b3a.776 - gsmtp)

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_misc.c#L1234-L1295

Session caching

● Avoids insecure reuse
○ Two domains might share the same MX host, but have different security policies
○ Caching by either or both of hostname and IP address is not safe
○ Even behind the same load balanced IP address session caches may be disjoint
○ So cache key includes ehlo response hostname, found to correlate with shared state
○ Plus security level, cipher selection, protocol range, name matching, per-message policy, …

● Shared via the tlsmgr(8)
○ Store/Lookup by above key, then (de)serialised via {d2i,i2d}_SESSION().
○ Just one slot per lookup key, no support for multiple concurrent tickets in client or server
○ Assume that servers don't enforce single-use sessions.

■ Tracking of client is not a concern for infrastructure such as MTAs.

https://github.com/vdukhovni/postfix/blob/69e7544da6594591ddbe36fbd914d66b21ffe7b9/postfix/src/tls/tls_fprint.c#L239-L337

Questions?

