## DNSSEC, the DANE PKI

(and OpenSSL)

## Assumed WebPKI background

- Basic asymmetric cryptography: private and public keys
- Certificates: signed bindings of public key to holder name(s) (SANs)
- Certification authorities (CAs)
  - Trust anchors (root CAs), subsidiary (intermediate) CAs, cross CAs
  - OCSP services, CRL distribution points
- CA/B forum, trust "bundles"
- Domain (control) Validation, ACME (Let's Encrypt, ...)

### WebPKI limitations

- Lack of effective name constraints
  - All CAs in the trust bundle are equally trusted to certify any domain
  - CA "C=" In Fedora 41 trust bundle, are all these countries "friends"?

```
59 US, 11 DE, 10 CN, 7 ES, 6 GB, 5 PL, 5 BM, 4 TW, 4 JP, 4 GR, 4 CH, 3 HU, 3 BE, 2 RO, 2 NO, 2 IN, 2 FR, 1 TR, 1 TN, 1 SK, 1 KR, 1 IT, 1 IE, 1 HK, 1 FI, 1 AT
```

- Insecure "domain validation"
- Authenticates logical hosts, rather than specific services

## Domains and DNS

## (DNS) Domain Hierarchy

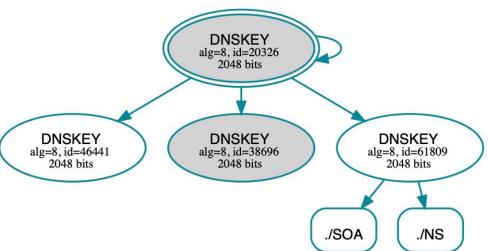
#### Root zone

- Hosts referrals to >1400 top-level (TLD) delegated subdomains:
  - 1040 Generic (gTLD): .arpa, .com, .edu, .gov, .net, .mil, .org, ...
  - 248 ISO country code (ccTLD): .au, .br, .cz, .dk, .es, .fr, ...
  - Internationalised (IDNA): 61 country (.中國), 90 generic (.コム)
- Served by many "anycast" root server nodes
  - Managed by 13 Root Server operators: a-m.root-servers.net
- Small enough to replicate and serve locally: <a href="https://localroot.isi.edu/">https://localroot.isi.edu/</a>

## Top-level domains (TLDs)

Registry, Registrar, Registrant (RRR)

- Operate **registries** of:
  - End-user (registrant) 2LD domains (example.com)
  - O Public-suffixes (.co.uk, .noda.chiba.jp, ...) with 3LD, 4LD, ... registrants
- DNS server operation may be (partly?) outsourced (Afilias, PCH, ...)
- Registrants typically obtain and manage their domains via a Registrar (Godaddy, Cloudflare, ...)
- End-user domain DNS service is often outsourced
- DNS operator starting to be formalised as a participant in the management model


## DNSSEC (specialised PKI)

Hardens DNS against spoofing and cache poisoning

- End-to-end authentication of DNS data (possibly multiple intermediate caches)
- Hierarchical and federated, each zone signs its own data
- Parent zone **DS** record set (RRset) validates child zone's **DNSKEY** RRset, which in turn validates the rest of the zone data
- Critically, protects the content or absence of **DS** records of any further delegated domains
- Authenticated denial of existence (DoE) validates NODATA and NXDOMAIN answers

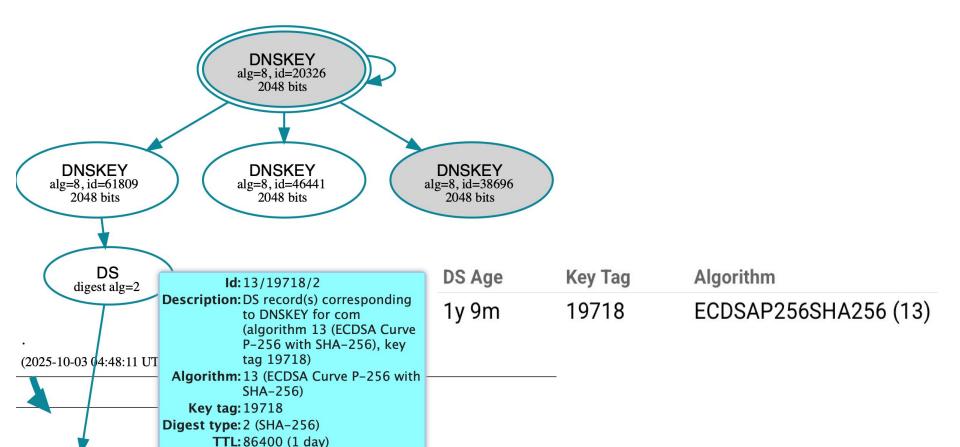
## DNSSEC root zone key-signing-key (KSK)

Rotated every ~8 years (<u>RFC 5011</u>)
 <a href="https://dnsviz.net/d/root/aLeZHw/dnssec/">https://dnsviz.net/d/root/aLeZHw/dnssec/</a>
 <a href="https://stats.dnssec-tools.org/explore/?.">https://stats.dnssec-tools.org/explore/?.</a>

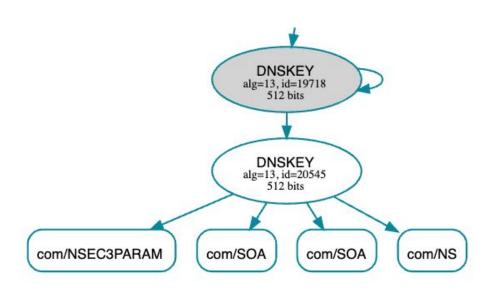


| DNSKEY<br>Age | Key<br>Tag | Flags | Algorithm        |
|---------------|------------|-------|------------------|
| 3m<br>13d     | 46441      | 256   | RSASHA256<br>(8) |
| 13d<br>12h    | 61809      | 256   | RSASHA256<br>(8) |
| 7y<br>11m     | 20326      | 257   | RSASHA256<br>(8) |
| 8m<br>20d     | 38696      | 257   | RSASHA256<br>(8) |

(2025-10-01 13:52:55 UTC)

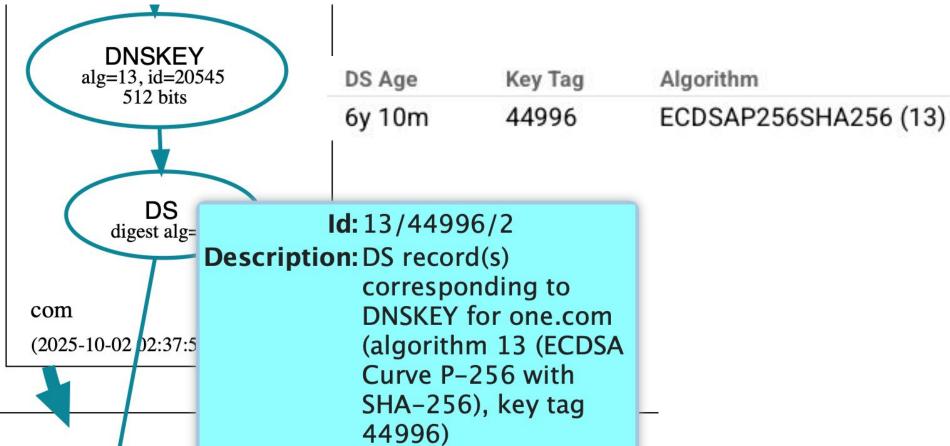

### DNSSEC

#### Root zone operations

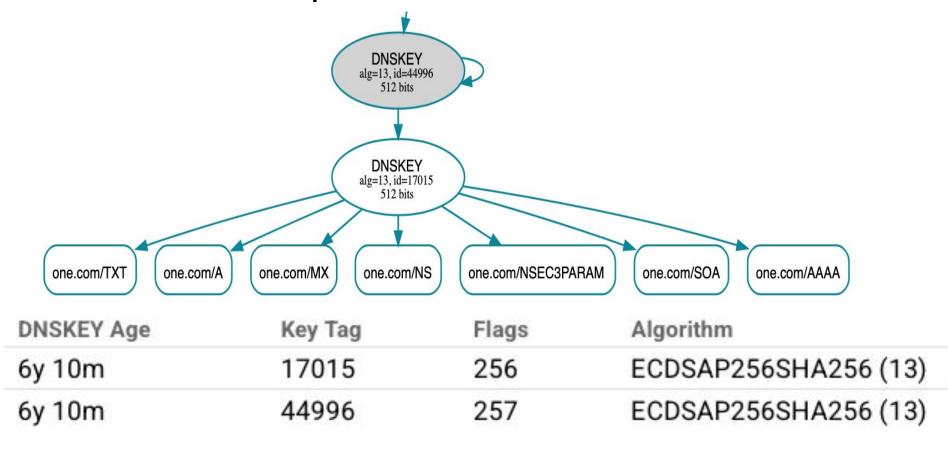

- ICANN: Root zone administrator and KSK custodian
- Verisign: Root Zone Maintainer and Root Zone Signing Key Operator
  - Operates the "a" root servers
- DNSSEC-signed since July 2010, last KSK rollover 2018, next 2026
  - Detailed history:

https://www.ausnog.net/sites/default/files/ausnog-04/presentations/ausnog-04-d01p07-joe-abley-icann.pdf

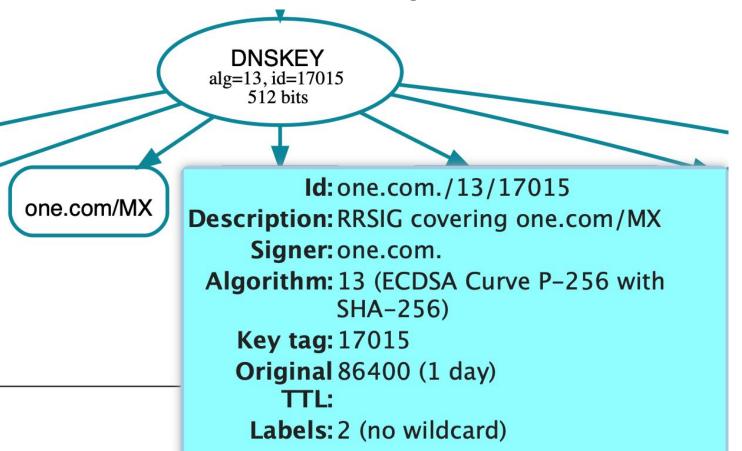
## Root zone TLD (.com) delegation




### .COM zone apex



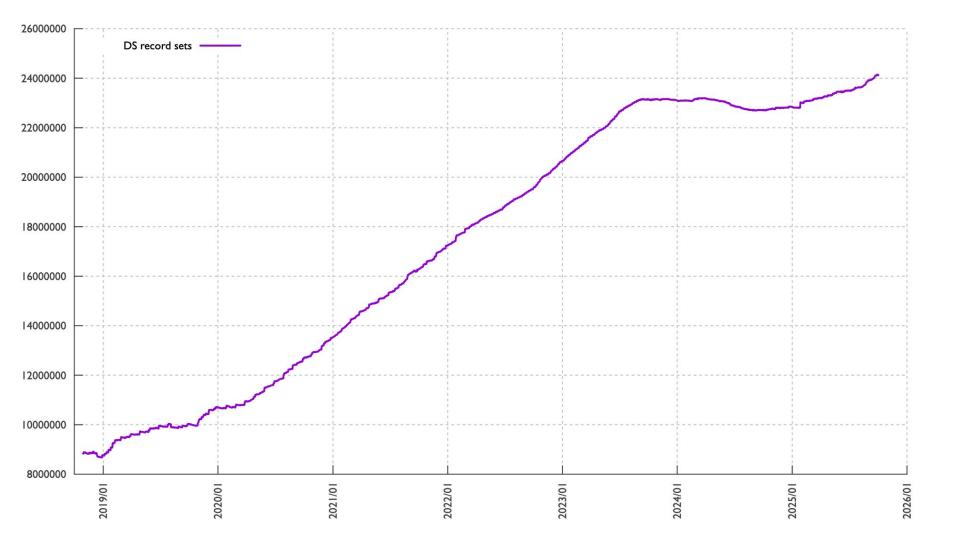

| DNSKEY Age | Key Tag | Flags | Algorithm            |
|------------|---------|-------|----------------------|
| 2m 23d     | 20545   | 256   | ECDSAP256SHA256 (13) |
| 1y 9m      | 19718   | 257   | ECDSAP256SHA256 (13) |


## 2LD Delegation (.com → one.com)



### one.com zone apex




### one.com MX RRset signature



### DNSSEC

### Summary

- DNSSEC is a PKI
  - With built-in name constraints, .ru can't sign .mil domains
  - With generally short signature lifetimes
  - No need for 3rd-party "domain validation"
- Recognising rôle of DNS operators in DNSKEY management is one of the goals of <u>IETF DELEG WG</u>
- Adoption is growing, for now low outside of EU and Brazil



## DANE TLSA

**DNSSEC PKI for TLS-enabled applications** 

(RFC 6698, RFC 7671)

### DNS TLSA records

DANE TLSA DNS Resource Record (RR) set:

```
_25._tcp.mail.example.org. IN TLSA 3 1 1 0123...cdef
_<port>._roto>.<name>. IN TLSA <<u>usage</u>> <<u>selector</u>> <<u>mtype</u>> <<u>data</u>>
```

- The usage determines whether matching end-entity (1/3) or trust anchor (0/2), and whether it constrains (0/1) or overrides (2/3) local trust store
- Each RR associates the (port, protocol, DNS name) triple with one or more
  - public keys or enclosing certificates (per the selector),
  - their full DER encoding or a digest (per the mtype)
- <u>Data</u> is hex-encoded in zone files, and raw binary "on the wire"

### TLSA records...

- Any one matching TLSA record is sufficient, making rollover non-disruptive
- Mnemonics in RFC 7218:

```
... IN TLSA DANE-EE(3) SPKI(1) SHA2-256(1) ...
```

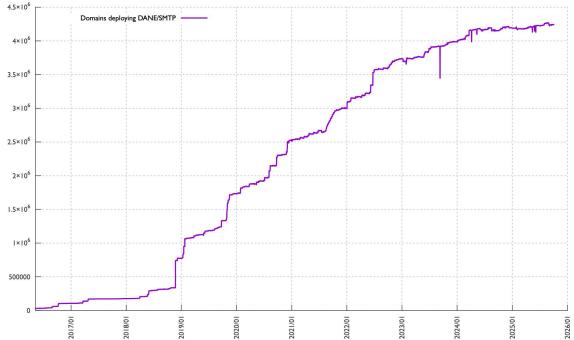
- Example <u>hotmail.cz</u>:
  - Authenticated either via given issuer CA or given server public key
  - Both TLSA records match (two DANE-EE records present during key rollovers)

```
hotmail.cz. IN MX 0 hotmail-cz.f-v1.mx.microsoft.
_25._tcp.hotmail-cz.f-v1.mx.microsoft. IN CNAME <a href="mailto:smtpdane.mx.microsoft">smtpdane.mx.microsoft</a>. IN TLSA 2 0 1 5f88...dd44
smtpdane.mx.microsoft. IN TLSA 3 1 1 c495...b0ea
```

## DANE for SMTP (and XMPP)

(poorly served by WebPKI)

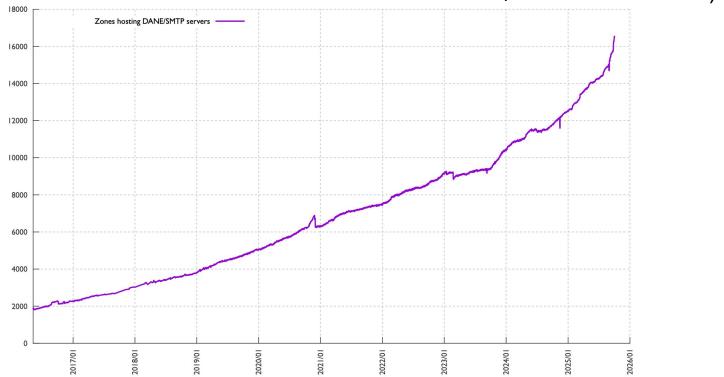
- SMTP (and XMPP) servers are found indirectly through MX (and SRV) records
- WebPKI assumes application has access to a trusted server name
  - But with DNS (mostly) unsigned SMTP and XMPP server names are untrusted
  - SMTP TLS is by default optional and unauthenticated, need downgrade-resistant signal to mitigate active (MiTM) attacks
  - RFC 7672 section 1.3 motivates use of DANE for SMTP
    - RFC 7673 follows suit for SRV-record based indirection
- DANE deployment cost scales with server count, not hosted domain count!


## DANE operations

- Better scaling than MTA-STS (no per-domain effort)
- No need for CRLs or OCSP: just change the TLSA records in DNS
- Since any one matching TLSA record is sufficient
  - Add TLSA records for upcoming cert/key before deployment
  - Remove TLSA record for no longer live cert/key after deployment
- Best practice TLSA RRsets are dual "current + next" DANE-EE(3) SPKI(1) SHA2-256(1).
  - The next key TLSA published at least a few TTLs in advance of cert deployment
  - O DANE-EE(3) SPKI(1) records are compatible with RFC 7250 raw public keys
- Robust automation is a must

## **DANE SMTP adoption**

### https://stats.dnssec-tools.org


 Used by MX hosts of ~4.25 million (~18% of all DNSSEC-signed) zones with a "public suffix" parent



## **DANE SMTP adoption**

### https://stats.dnssec-tools.org

These MX hosts are in ~16 thousand zones (~28k TLSA RRsets)



# DANE in OpenSSL (1.1.0+)

### DANE pre-connection initialisation

Same ctx can be used for both DANE and non-DANE TLS

```
SSL_CTX *ctx;
SSL *ssl;
const char *dane_tlsa_domain = "smtp.example.com";
if ((ctx = SSL_CTX_new(TLS_client_method())) == NULL
   || SSL_CTX_dane_enable(ctx) <= 0
    | | (ssl = SSL_new(ctx)) == NULL
    || SSL_dane_enable(ssl, dane_tlsa_domain) <= 0)</pre>
    /* error */
SSL_set_hostflags(ssl, X509_CHECK_FLAG_NO_PARTIAL_WILDCARDS);
/* Application specific, when no "unknown keyshare" attacks */
SSL_dane_set_flags(ssl, DANE_FLAG_NO_DANE_EE_NAMECHECKS);
```

## Adding peer TLSA records

#### Obtained from DNS or local policy

 Peer's TLSA records, ad hoc trust anchors, required intermediate issuers, <u>RFC 7250</u> trusted raw public keys, ...

```
uint8_t usage, selector, mtype;
for (... each applicable TLSA record ...) {
    unsigned char *data;
    size_t dlen;
    ...
    ret = SSL_dane_tlsa_add(ssl, usage, selector, mtype, data, dlen);
    if (ret < 0)
        /* handle SSL library internal error */
    else if (ret == 0)
        /* handle unusable TLSA record */
    else
        ++num_usable;
}</pre>
```

## DANE connection setup

```
int (*verify_cb)(int ok, X509_STORE_CTX *sctx) = NULL;
if (num_usable == 0) {
    /* Handle all records unusable */
} else {
   SSL_set_verify(ssl, SSL_VERIFY_PEER, verify_cb);
/* Complete SSL_connect() handshake and handle errors here */
if (SSL_session_reused(ssl)) {
    /* Verification status available,
     * but not DANE match details */
} else if (SSL_get_verify_result(ssl) == X509_V_OK) {
    ... continued ...
```

## DANE post-handshake reflection

```
const char *peername = SSL_get0_peername(ssl);
   EVP_PKEY *mspki = NULL:
   int depth = SSL_get0_dane_authority(ssl, NULL, &mspki);
   if (depth >= 0) {
       (void) SSL_get0_dane_tlsa(ssl, &usage, &selector,
                               &mtype, NULL, NULL);
       printf("DANE TLSA %d %d %d ", usage, selector, mtype);
       if (SSL_get0_peer_rpk(ssl) == NULL)
          "matched the EE", mdpth);
       else
          printf(bio, "matched the peer raw public key\n");
} else {
   /* Not authenticated, presumably all TLSA rrs unusable */
```

## Summary

- DANE well suited for cross-org server-to-server TLS
  - Especially with services using SRV or MX records
- Supports raw public keys with DANE-EE(3) SPKI(1) TLSA records
- Supports locally synthesised records for various forms of "pinning"
- Can replace or harden (constrain) the WebPKI (by requiring a match with a listed intermediate CA, or specific EE cert)