
Tomáš Mráz, Public Support and Security Manager, Director

OpenSSL Application Performance
Tuning

| 2OpenSSL Application Performance Tuning

Agenda

● Building OpenSSL for optimal performance

● Optimizing EVP API usage

● Optimizing libssl API usage

● Choosing the most performant and secure algorithms

| 3OpenSSL Application Performance Tuning

Building OpenSSL for optimal performance

Building OpenSSL for optimal performance

OpenSSL Application Performance Tuning | 4

● Avoid using no-asm – on Windows NASM must be installed

● Avoid using -d or --debug – that disables optimization

● Add enable-ec_nistp_64_gcc_128 if performance of P-521 (and

P-384 on newer versions) ECDH/ECDSA is important

○ Requires 64 bit little endian platform

● Disable engines (no-engines) if not needed

● Disable DH (no-dh) or DSA (no-dsa) if not needed

Building OpenSSL for optimal performance

OpenSSL Application Performance Tuning | 5

● Disabling various other unneeded features is possible

○ It will not affect speed mostly

○ It can lower the footprint of the library in memory

● By default -O3 is used

○ Try adding -O2 or -Os – these might provide better

performance for your concrete use case and platform

Building OpenSSL for optimal performance

OpenSSL Application Performance Tuning | 6

● Last but not least

○ Use the latest 3.x minor version as the performance is improved

significantly from 3.0

○ Validated 3.0.8/3.0.9/3.1.2 FIPS providers can be used with the

current library providing most of the performance benefits

| 7

Minimal TLS implementation with reasonable compatibility and performance

OpenSSL Application Performance Tuning

Building OpenSSL for optimal performance

./Configure
enable-ec_nistp_64_gcc_128

./Configure enable-ec_nistp_64_gcc_128 no-argon2
no-aria no-async no-bf no-blake2 no-camellia
no-cast no-cmp no-cms no-comp no-deprecated
no-des no-dgram no-dh no-dsa no-ec2m no-engine
no-gost no-http no-idea no-legacy no-md4 no-mdc2
no-multiblock no-nextprotoneg no-ocb no-ocsp
no-quic no-rc2 no-rc4 no-rmd160 no-scrypt no-seed
no-siphash no-siv no-sm2 no-sm3 no-sm4 no-srp
no-srtp no-ts no-whirlpool -Os

libcrypto size 6406968 bytes 4270496 bytes (smaller by 33%)

libssl size 1212920 bytes 701304 bytes (smaller by 42%)

| 8OpenSSL Application Performance Tuning

Optimizing EVP API usage

Optimizing EVP API usage

OpenSSL Application Performance Tuning | 9

● With support for providers there is much greater flexibility and larger feature set

○ This comes at some costs

● We tried to maximize compatibility with old application code

○ Lazy initialization

■ More locking needed – affects multithreaded performance

○ Implicit algorithm fetching

■ Fetch is not a free operation, repeated identical fetches should

be avoided

○ Support for engines and low-level methods kept

■ Mostly raises the library footprint, does not affect the

performance directly

| 10

 for (i = 0; i < num_calls; i++) {
 if ((mctx = EVP_MD_CTX_new()) == NULL)
 goto err;
 if (EVP_DigestInit(mctx, EVP_sha256()) <= 0)
 goto err;
 if (EVP_DigestUpdate(mctx, buf, sizeof(buf)) <= 0)
 goto err;
 if (EVP_DigestFinal(mctx, digest, &dlen) <= 0)
 goto err;
 EVP_MD_CTX_free(mctx);
 }

OpenSSL Application Performance Tuning

Let’s try to digest 64 bytes with SHA-256 repeatedly

Optimizing EVP API usage

OpenSSL Application Performance Tuning | 11

● This uses implicit fetch

○ EVP_sha256() is just a placeholder object containing the name of

the algorithm

○ 0.39μs per one digest operation

● All numbers were measured on my AMD Ryzen based laptop

● With OpenSSL 3.3.1 version

| 12

EVP_MD *md = EVP_MD_fetch(NULL, "SHA-256", NULL);
for (i = 0; i < num_calls; i++) {
 if ((mctx = EVP_MD_CTX_new()) == NULL)
 goto err;
 if (EVP_DigestInit(mctx, md) <= 0)
 goto err;
 if (EVP_DigestUpdate(mctx, buf, sizeof(buf)) <= 0)
 goto err;
 if (EVP_DigestFinal(mctx, digest, &dlen) <= 0)
 goto err;
 EVP_MD_CTX_free(mctx);
}
EVP_MD_free(md);

OpenSSL Application Performance Tuning

What if we use explicit digest fetch

Optimizing EVP API usage

OpenSSL Application Performance Tuning | 13

● 0.24μs per one digest operation, this should be roughly equivalent to

1.1.1

○ 38% shorter time

● But we can optimize a little bit more…

| 14

EVP_MD *md = EVP_MD_fetch(NULL, "SHA-256", NULL);
if ((mctx = EVP_MD_CTX_new()) == NULL)

 goto err;

for (i = 0; i < num_calls; i++) {

 if (EVP_DigestInit(mctx, md) <= 0)

 goto err;

 if (EVP_DigestUpdate(mctx, buf, sizeof(buf)) <= 0)

 goto err;

 if (EVP_DigestFinal(mctx, digest, &dlen) <= 0)

 goto err;

}

EVP_MD_CTX_free(mctx);

EVP_MD_free(md);

OpenSSL Application Performance Tuning

No need to allocate and free the EVP_MD_CTX object inside the loop

Optimizing EVP API usage

OpenSSL Application Performance Tuning | 15

● 0.2μs per one digest operation

○ 49% shorter time

● Now we can apply this to symmetric encryption

| 16

if ((cipher = EVP_CIPHER_fetch(NULL, "AES-256-CBC", NULL)) == NULL)
 goto err;
if ((ctx = EVP_CIPHER_CTX_new()) == NULL)
 goto err;
for (i = 0; i < num_calls; i++) {
 if (!EVP_EncryptInit_ex2(ctx, cipher, key, iv, NULL))
 goto err;
 if (!EVP_EncryptUpdate(ctx, ctbuf, &ctlen, ptbuf, sizeof(ptbuf)))
 goto err;
 if (!EVP_EncryptFinal_ex(ctx, ctbuf + ctlen, &ctlen))
 goto err;
}
EVP_CIPHER_CTX_free(ctx);
EVP_CIPHER_free(cipher);

OpenSSL Application Performance Tuning

Let’s say we need to encrypt 1024 bytes of plaintext with AES-256-CBC periodically

Optimizing EVP API usage

OpenSSL Application Performance Tuning | 17

● 1.16μs per one 1024 kB encryption
● But we are wasting computation time on something…

| 18

if ((cipher = EVP_CIPHER_fetch(NULL, "AES-256-CBC", NULL)) == NULL)
 goto err;
if ((ctx = EVP_CIPHER_CTX_new()) == NULL)
 goto err;
if (!EVP_EncryptInit_ex2(ctx, cipher, key, NULL, NULL))
 goto err;
for (i = 0; i < num_calls; i++) {
 if (!EVP_EncryptInit_ex2(ctx, NULL, NULL, iv, NULL))
 goto err;
 if (!EVP_EncryptUpdate(ctx, ctbuf, &ctlen, ptbuf, sizeof(ptbuf)))
 goto err;
 if (!EVP_EncryptFinal_ex(ctx, ctbuf + ctlen, &ctlen))
 goto err;
}
EVP_CIPHER_CTX_free(ctx);
EVP_CIPHER_free(cipher);

OpenSSL Application Performance Tuning

We can reuse the preset key schedule

Optimizing EVP API usage

OpenSSL Application Performance Tuning | 19

● 0.94μs per one 1024 kB encryption
○ 19% shorter time

● What about composite algorithms? (HMAC, HKDF, etc.)

| 20

if ((mac = EVP_MAC_fetch(NULL, "HMAC", NULL)) == NULL)
 goto err;
if ((mctx = EVP_MAC_CTX_new(mac)) == NULL)
 goto err;
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, (char *)digest_name,
 sizeof(digest_name));
params[1] = OSSL_PARAM_construct_end();
for (i = 0; i < num_calls; i++) {
 if (!EVP_MAC_init(mctx, key, sizeof(key), params))
 goto err;
 if (!EVP_MAC_update(mctx, buf, sizeof(buf)))
 goto err;
 if (!EVP_MAC_final(mctx, macbuf, &dlen, dlen))
 goto err;
}
EVP_MAC_ctx_free(mctx);
EVP_MAC_free(mac);

OpenSSL Application Performance Tuning

Periodically create a HMAC-SHA-256 of 200 bytes buffer with the same key

Optimizing EVP API usage

OpenSSL Application Performance Tuning | 21

● This takes 0.74μs per computation of HMAC-SHA-256 over 200 bytes
buffer

● However there are also some inefficiencies
○ The SHA-256 digest algorithm is internally fetched in the HMAC

implementation
● Can we do better?

| 22

if ((mac = EVP_MAC_fetch(NULL, "HMAC", NULL)) == NULL)
 goto err;
if ((mctx_tpl = EVP_MAC_CTX_new(mac)) == NULL)
 goto err;
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, (char *)digest_name,
 sizeof(digest_name));
params[1] = OSSL_PARAM_construct_end();
if (!EVP_MAC_init(mctx_tpl, key, sizeof(key), params))
 goto err;
for (i = 0; i < num_calls; i++) {
 if (((mctx = EVP_MAC_CTX_dup(mctx_tpl)) == NULL)
 goto err;
 if (!EVP_MAC_update(mctx, buf, sizeof(buf)))
 goto err;
 if (!EVP_MAC_final(mctx, macbuf, &dlen, dlen))
 goto err;
 EVP_MAC_CTX_free(mctx);
 mctx = NULL;
}
...

OpenSSL Application Performance Tuning

Periodically create a HMAC-SHA-256 of 200 bytes buffer with the same key

Optimizing EVP API usage

OpenSSL Application Performance Tuning | 23

● This takes 0.7μs per computation as we spare both the fetch and the

internal initialization of hash context(s)

○ 5% shorter time

● If the key is different we could still use the duplication trick

○ Not showing the code here, left as exercise for you

○ However the context duplication overhead is larger

than the internal fetch

○ Requires 0.921μs per computation

| 24OpenSSL Application Performance Tuning

Optimizing libssl usage

Optimizing libssl usage

OpenSSL Application Performance Tuning | 25

● TLS client
○ Create and preset the SSL_CTX with CA cert store

■ Use the same SSL_CTX with multiple client connections
instead of creating it repeatedly for every connection

■ Requires 995μs vs 1100μs to do handshake when the client
SSL_CTX is shared

○ Use the cert directory store instead of the cert file store
for CA certificates
■ Use SSL_CTX_load_verify_dir() instead of

SSL_CTX_load_verify_file()

Optimizing libssl usage

OpenSSL Application Performance Tuning | 26

● SSL_SESSION reuse on the TLS client
○ SSL session caching is enabled by default on the server
○ But not on the client side
○ Even if enabled libssl does not use the cached SSL_SESSION

entries automatically as only the application knows when the
session can be reused

● There is one exception. When an SSL object is reused for a
subsequent connection, there is already a SSL_SESSION
present in the SSL object.

Optimizing libssl usage

OpenSSL Application Performance Tuning | 27

● Avoid using expensive key exchange algorithms
○ Disable RSA and DHE key exchange

■ For TLS-1.2: SSL_CTX_set_cipher_list(ssl, "DEFAULT:-kRSA:-kDHE");
■ For TLS-1.3 we need to list the allowed groups

● For example: SSL_set1_groups_list(ssl,
"X25519:P-256");

■ Whether X25519 is faster than P-256 depends on the
platform
● On my laptop one X25519 takes 27.5μs,

P-256 takes 41.2μs
● X25519 is not FIPS approved though

| 28OpenSSL Application Performance Tuning

How do you choose the most performant algorithms?

Choosing the most performant algorithms

OpenSSL Application Performance Tuning | 29

● We started on this topic already
● Never put performance over security

○ Really, so should I always use crypto with at least 256 bit security?
○ That would be silly, so better idea is to say – stick with some

minimum security level depending on your requirements (i.e. 128 bit
security should be sufficient for all use cases except where 256 bit
is mandatory).

○ Use the right algorithm for the job (example: AES-ECB mode
encryption is fast, but never the right answer)

| 30

● Which algorithm should I use to

symmetrically encrypt some raw

data?

● Use an AEAD cipher to protect

both confidentiality and integrity

of the data.

● To measure use: openssl
speed -evp <algorithm>

OpenSSL Application Performance Tuning

Choosing the most performant algorithms

Cipher Number of bytes processed per
second (with 16KiB blocks)

AES-128-GCM 4986 MB/s

AES-128-CCM 1569 MB/s

AES-128-OCB 9031 MB/s

ChaCha20-Poly1305 2315 MB/s

Choosing the most performant algorithms

OpenSSL Application Performance Tuning | 31

● The AES-128-OCB is the fastest from these on my hardware

● The results might be very different on different CPU architectures

but even different CPUs of the same base architecture

○ For example on CPUs without AES-NI on x86 (or similar

instructions on other platforms) the ChaCha20-Poly1305

algorithm will be the fastest one by large margin

● Use openssl speed to measure not only the speed of

ciphers but also digests, signatures, key exchanges, etc.

| 32

● Which algorithm to choose for certificates?

● Use openssl speed to measure RSA vs ECDSA and EdDSA

OpenSSL Application Performance Tuning

Choosing the most performant algorithms

Algorithm signatures/s verifications/s

ECDSA (nistp256) 56539.3 18541.4

RSA-2048 2003.7 69798.3

RSA-3072 660.1 33510.8

EdDSA (Ed25519) 27025.4 10037.5

Choosing the most performant algorithms

OpenSSL Application Performance Tuning | 33

● For maximum speed on the server side we want to use ECDSA with

nistp256 parameters

● In theory RSA keys (even with 3072 bits to achieve 128 bit security level)

would be better for CA certs as the speed of verification is better for RSA

○ However this does not account for larger data transfer size for

the intermediate CA cert chain

● EdDSA has some better security properties than ECDSA and

could be probably optimized further but currently it is

slower than ECDSA with nistp256 on my hardware

Choosing the most performant algorithms

OpenSSL Application Performance Tuning | 34

● For maximum compatibility we can have both ECDSA and RSA

certificate on the server

● Set the server up in a way to prefer the ECDSA certificate if the client

supports it

● For TLS-1.2 we need to order ECDSA ciphers before the RSA

SSL_CTX_set_cipher_list(ctx,
"aECDSA:aRSA:-kRSA:-kDHE:-eNULL:-ARIA:-CAMELLIA");

Choosing the most performant algorithms

OpenSSL Application Performance Tuning | 35

● For TLS-1.3 set the sigalgs

SSL_CTX_set1_sigalgs_list(ctx,
"ECDSA+SHA256:ECDSA+SHA384:ECDSA+SHA512:ed25519:rsa_pss_pss
_sha256:rsa_pss_pss_sha384:rsa_pss_pss_sha512:rsa_pss_rsae_
sha256:rsa_pss_rsae_sha384:rsa_pss_rsae_sha512:RSA+SHA256:R
SA+SHA384:RSA+SHA512:ECDSA+SHA224:RSA+SHA224");

● Set server cipher preference: SSL_CTX_set_options(ctx,

SSL_OP_CIPHER_SERVER_PREFERENCE);

○ This affects both ciphers and sigalgs

| 36OpenSSL Application Performance Tuning

Further reading
https://docs.openssl.org/

https://docs.openssl.org/3.3/man3/

| 37OpenSSL Application Performance Tuning

Thank you! & Questions?

