pEnSSL

[Foundation

OpenSSL Application Performance
Tuning

Tomdas Mrdz, Public Support and Security Manager, Director

Agenda

e Building OpenSSL for optimal performance
e Optimizing EVP API usage
e Optimizing libssl APl usage

e Choosing the most performant and secure algorithms

OpenSSL Application Performance Tuning morqoaias;ﬁ | 2

tAa(<=n){oF/o}tAa(<=n){oF/o}tAa(<=n){o]F/o}tAa(<=n){o]F/o}
V{olF/oin(<=n){oF/otn(<=n){oF/ojn(<=n){oF/oin(<=n)
tn(<=n){oF/o}tAa(<=n){oJF/o}tn(<=n){oF/o}tn(<=n){o]JF/0}

OpenSSL Application Performance Tuning

Building OpenSSL for optimal performance

e Avoid using no-asm-on Windows NASM must be installed
e Avoid using -d or --debug - that disables optimization
e Addenable-ec_nistp_64_gcc_128 if performance of P-521 (and
P-384 on newer versions) ECDH/ECDSA is important
o Requires 64 bit little endian platform
e Disable engines (no-engines) if not needed

e Disable DH (no-dh) or DSA (no-dsa) if not needed

OpenSSL.

OpenSSL Application Performance Tuning]PTl_{ndatﬁ | 4

Building OpenSSL for optimal performance

e Disabling various other unneeded features is possible
o It will not affect speed mostly
o It can lower the footprint of the library in memory
e Bydefault -03 is used
o Try adding -02 or -0s — these might provide better

performance for your concrete use case and platform

openssL.

OpenSSL Application Performance Tuning]PTL{ndatﬁ | 5

Building OpenSSL for optimal performance

e Last but not least
o Use the latest 3.x minor version as the performance is improved

significantly from 3.0
o Validated 3.0.8/3.0.9/3.1.2 FIPS providers can be used with the

current library providing most of the performance benefits

openssL.

OpenSSL Application Performance Tuning]PTL{ndatﬁ | 6

Building OpenSSL for optimal performance

Minimal TLS implementation with reasonable compatibility and performance

./Configure ./Configure enable-ec_nistp_64_gcc_128 no-argon2

enable-ec_nistp_64_gcc_128 no-aria no-async no-bf no-blake2 no-camellia
no-cast no-cmp no-cms no-comp no-deprecated
no-des no-dgram no-dh no-dsa no-ec2m no-engine
no-gost no-http no-idea no-legacy no-md4 no-mdc2
no-multiblock no-nextprotoneg no-ocb no-ocsp
no-quic no-rc2 no-rc4 no-rmd160 no-scrypt no-seed
no-siphash no-siv no-sm2 no-sm3 no-sm4 no-srp
no-srtp no-ts no-whirlpool -0s

libcrypto size 6406968 bytes 4270496 bytes (smaller by 33%)

libssl size 1212920 bytes 701304 bytes (smaller by 42%)

———OpenSsL.

Foundation | 7

OpenSSL Application Performance Tuning

tAa(<=n){oF/o}tAa(<=n){oJF/o}tAa(<=n){o]F/fotn(<=n){o]F/0}
VY{oJF/o}Aa(<=n){oJF/o}tn(<=n){oJF/o}tn(<=n){oF/o}Aa(<=n)
dn(<=n){oF/oin(<=n){oF/ojn(<=n){oF/oinr(<=n){o]F/o}

OpenSSL Application Performance Tuning

Optimizing EVP API usage

e With support for providers there is much greater flexibility and larger Feature set
o This comes at some costs
e We tried to maximize compatibility with old application code
o Lazy initialization
m More locking needed - affects multithreaded performance

o Implicit algorithm fetching
m Fetchis not a free operation, repeated identical fetches should
be avoided
o Support for engines and low-level methods kept
m Mostly raises the library footprint, does not affect the
performance directly

OpensSst.

OpenSSL Application Performance Tuning mrpldation | 9

Let's try to digest 64 bytes with SHA-256 repeatedly

for (i = ©; i < num_calls; i++) {

if ((mctx = EVP_MD_CTX_new()) == NULL)
goto err;

if (EVP_DigestInit(mctx, EVP_sha256()) <= 0)
goto err;

if (EVP_DigestUpdate(mctx, buf, sizeof(buf)) <= @)
goto err;

if (EVP_DigestFinal(mctx, digest, &dlen) <= 0)
goto err;

EVP_MD_CTX_free(mctx) ;

OpenSSL Application Performance Tuning

oponSSL‘
Foundation | 10

Optimizing EVP API usage

e This uses implicit Fetch
o EVP_sha256() is just a placeholder object containing the name of
the algorithm

o 0.39pus per one digest operation

e All numbers were measured on my AMD Ryzen based laptop
e With OpenSSL 3.3.1 version

openssL.

OpenSSL Application Performance Tuning]PTL{ndatﬁ [11

What if we use explicit digest fetch

EVP_MD *md = EVP_MD_fetch(NULL, "SHA-256", NULL);
for (i = ©; i < num_calls; i++) {
if ((mctx = EVP_MD_CTX_new()) == NULL)
goto err;
if (EVP_DigestInit(mctx, md) <= 0)
goto err;
if (EVP_DigestUpdate(mctx, buf, sizeof(buf)) <= 0)
goto err;
if (EVP_DigestFinal(mctx, digest, &dlen) <= @)
goto err;
EVP_MD_CTX_free(mctx) ;

}
EVP_MD_free(md) ;

opensst.

Foundation | 12

OpenSSL Application Performance Tuning

Optimizing EVP API usage

e 0.24ps per one digest operation, this should be roughly equivalent to
1.1.1
o 38% shorter time

e But we can optimize a little bit more...

openssL.

OpenSSL Application Performance Tuning MndatE [13

No need to allocate and free the EVP_MD_CTX object inside the loop

EVP_MD *md = EVP MD fetch (NULL, "SHA-256", NULL);

if ((mctx = EVP_MD CTX new()) == NULL)
goto err;
for (1 = 0; i < num _calls; i++) {

if (EVP DigestInit (mctx, md) <= 0)
goto err;
if (EVP DigestUpdate (mctx, buf, sizeof (buf)) <= 0)
goto err;
if (EVP DigestFinal (mctx, digest, &dlen) <= 0)
goto err;
}
EVP MD CTX free (mctx);
EVP MD free (md) ;

opensst.

OpenSSL Application Performance Tuning [Foundation | 14

Optimizing EVP API usage

e 0.2us per one digest operation
o 49% shorter time

e Now we can apply this to symmetric encryption

OpenSSL Application Performance Tuning M}"{EZS{E | 15

Let's say we need to encrypt 1024 bytes of plaintext with AES-256-CBC periodically

if ((cipher = EVP_CIPHER_fetch(NULL, "AES-256-CBC", NULL)) == NULL)
goto err;

if ((ctx = EVP_CIPHER_CTX_new()) == NULL)
goto err;

for (i = ©; i < num_calls; i++) {
if (!EVP_EncryptInit_ex2(ctx, cipher, key, iv, NULL))

goto err;

if (!EVP_EncryptUpdate(ctx, ctbuf, &ctlen, ptbuf, sizeof(ptbuf)))
goto err;

if (!'EVP_EncryptFinal_ex(ctx, ctbuf + ctlen, &ctlen))
goto err;

}
EVP_CIPHER_CTX_free(ctx);

EVP_CIPHER_free(cipher);

OpensSsL.

Foundation | 16

OpenSSL Application Performance Tuning

Optimizing EVP API usage

e 1.16us perone 1024 kB encryption
e But we are wasting computation time on something...

OpenSSL Application Performance Tuning M}"{EZS{E | 17

We can reuse the preset key schedule

if ((cipher = EVP_CIPHER_fetch(NULL, "AES-256-CBC", NULL)) == NULL)

goto err;

if ((ctx = EVP_CIPHER_CTX_new()) == NULL)
goto err;

if (!EVP_EncryptInit_ex2(ctx, cipher, key, NULL, NULL))
goto err;

for (i = @; i < num_calls; i++) {
if (!'EVP_EncryptInit_ex2(ctx, NULL, NULL, iv, NULL))

goto err;

if (!EVP_EncryptUpdate(ctx, ctbuf, &ctlen, ptbuf, sizeof(ptbuf)))
goto err;

if (!EVP_EncryptFinal_ex(ctx, ctbuf + ctlen, &ctlen))
goto err;

}
EVP_CIPHER_CTX_free(ctx);
EVP_CIPHER_free(cipher);

opensst.

OpenSSL Application Performance Tuning [Foundation | 18

Optimizing EVP API usage

e 0.94us per one 1024 kB encryption
o 19% shorter time
e What about composite algorithms? (HMAC, HKDF, etc.)

openssL.

OpenSSL Application Performance Tuning MndatE [19

Periodically create a HMAC-SHA-256 of 200 bytes buffer with the same key

if ((mac = EVP_MAC_fetch(NULL, "HMAC", NULL)) == NULL)
goto err;
if ((mctx = EVP_MAC_CTX_new(mac)) == NULL)
goto err;
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, (char *)digest_name,
sizeof(digest_name)) ;
params[1] = OSSL_PARAM_construct_end();
for (i = ©; i < num_calls; i++) {
if (!EVP_MAC_init(mctx, key, sizeof(key), params))

goto err;

if (!EVP_MAC_update(mctx, buf, sizeof(buf)))
goto err;

if (!EVP_MAC_final(mctx, macbuf, &dlen, dlen))
goto err;

}
EVP_MAC_ctx_free(mctx);
EVP_MAC_free(mac) ;

———OpenSsL.

OpenSSL Application Performance Tuning [Foundation | 20

Optimizing EVP API usage

e This takes 0.74us per computation of HMAC-SHA-256 over 200 bytes
buffer
e However there are also some inefficiencies
o The SHA-256 digest algorithm is internally fetched in the HMAC
implementation
e Can we do better?

openssL.

OpenSSL Application Performance Tuning]PTL{ndatﬁ | 21

Periodically create a HMAC-SHA-256 of 200 bytes buffer with the same key

if ((mac = EVP_MAC_fetch(NULL, "HMAC", NULL)) == NULL)
goto err;
if ((mctx_tpl = EVP_MAC_CTX_new(mac)) == NULL)
goto err;
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, (char *)digest_name,
sizeof(digest_name));
params[1] = OSSL_PARAM_construct_end();
if (!EVP_MAC_init(mctx_tpl, key, sizeof(key), params))
goto err;
for (i = ©; i < num_calls; i++) {
if (((mctx = EVP_MAC_CTX_dup(mctx_tpl)) == NULL)
goto err;
if (!EVP_MAC_update(mctx, buf, sizeof(buf)))
goto err;
if (!EVP_MAC_final(mctx, macbuf, &dlen, dlen))
goto err;
EVP_MAC_CTX_free(mctx) ;
mctx = NULL;

———OpenSsL.

OpenSSL Application Performance Tuning [Foundation | 22

Optimizing EVP API usage

e This takes 0.7us per computation as we spare both the fetch and the
internal initialization of hash context(s)
o 5% shorter time
e |Ifthe keyis different we could still use the duplication trick
o Not showing the code here, left as exercise for you
o However the context duplication overhead is larger
than the internal fetch

o Requires 0.921us per computation

OpenSSL.

OpenSSL Application Performance Tuning]PTl_{ndatﬁ | 23

tAa(<=n){oF/o}tAa(<=n){oJF/o}tAa(<=n){o]F/fotn(<=n){o]F/0}
VY{oJF/o}Aa(<=n){oJF/o}tn(<=n){oJF/o}tn(<=n){oF/o}Aa(<=n)
dn(<=n){oF/oin(<=n){oF/ojn(<=n){oF/oinr(<=n){o]F/o}

OpenSSL Application Performance Tuning

Optimizing libssl usage

e TLSclient
o Create and preset the SSL_CTX with CA cert store
m Use the same SSL_CTX with multiple client connections
instead of creating it repeatedly for every connection
m Requires 995us vs 1100us to do handshake when the client
SSL_CTX is shared
o Use the cert directory store instead of the cert File store
for CA certificates

m UseSSL_CTX_load_verify_dir() instead of
SSL_CTX_load_verify_file()

OpenSSL.

OpenSSL Application Performance Tuning]PTl_{ndatﬁ | 25

Optimizing libssl usage

e SSL_SESSION reuse on the TLS client
o SSL session caching is enabled by default on the server
o But noton the client side
o Evenif enabled libssl does not use the cached SSL_SESSION
entries automatically as only the application knows when the
session can be reused
e Thereis one exception. When an SSL object is reused for a
subsequent connection, there is already a SSL_SESSION
present in the SSL object.

OpenSSL.

OpenSSL Application Performance Tuning]PTl_{ndatﬁ | 26

Optimizing libssl usage

e Avoid using expensive key exchange algorithms
o Disable RSA and DHE key exchange
m For TLS-1.2:ssL_cTX_set_cipher_list(ssl, "DEFAULT:-kRSA:-kDHE"):
m For TLS-1.3 we need to list the allowed groups
e Forexample: SSL_set1_groups_list(ssl,
"X25519:P-256") ;
m Whether X25519 is faster than P-256 depends on the
platform
e On my laptop one X25519 takes 27.5ps,
P-256 takes 41.2ps
e X25519is not FIPS approved though

OpenSSL.

OpenSSL Application Performance Tuning]PTl_{ndatﬁ | 27

tAa(<=n){oF/o}tAa(<=n){oF/o}tAa(<=n){o]F/o}tAa(<=n){o]F/o}
V{olF/oin(<=n){oF/otn(<=n){oF/ojn(<=n){oF/oin(<=n)
tn(<=n){oF/o}tAa(<=n){oJF/o}tn(<=n){oF/o}tn(<=n){o]JF/0}

OpenSSL Application Performance Tuning B s

Choosing the most performant algorithms

e We started on this topic already
e Never put performance over security

o Really, so should | always use crypto with at least 256 bit security?

o That would be silly, so better idea is to say — stick with some
minimum security level depending on your requirements (i.e. 128 bit
security should be sufficient for all use cases except where 256 bit
is mandatory).

o Use the right algorithm for the job (example: AES-ECB mode
encryption is fast, but never the right answer)

OpenSSL Application Performance Tuning

—OpensSSt—
Foundation | 29

Choosing the most performant algorithms

e Which algorithm should | use to Cipher Number of bytes processed per
symmetrically encrypt some raw second {with 16KiB blocks)
data? AES-128-GCM 4986 MB/s

e Use an AEAD cipher to protect AES-128-CCM 1569 MB/s
both confidentiality and integrity | Ars_158.0cB 9031 MB/s
of the data.

ChaCha20-Poly1305 | 2315 MB/s

e To measure use: openssl
speed -evp <algorithm>

OpenSSL Application Performance Tuning M}"l‘ﬁiﬁ | 30

Choosing the most performant algorithms

e The AES-128-OCB is the fastest from these on my hardware

e The results might be very different on different CPU architectures
but even different CPUs of the same base architecture

o For example on CPUs without AES-NI on x86 (or similar
instructions on other platforms) the ChaCha20-Poly1305
algorithm will be the fastest one by large margin

e Useopenssl speedto measure not only the speed of
ciphers but also digests, signatures, key exchanges, etc.

OpenSSL.

OpenSSL Application Performance Tuning]PTl_{ndatﬁ [31

Choosing the most performant algorithms

e Which algorithm to choose for certificates?

e Use openssl speed to measure RSA vs ECDSA and EdDSA

Algorithm signatures/s verifications/s
ECDSA (nistp256) 56539.3 18541.4
RSA-2048 2003.7 69798.3
RSA-3072 660.1 33510.8
EdDSA (Ed25519) 27025.4 10037.5

OpenSSL Application Performance Tuning

—OpensSSt—
Foundation | 32

Choosing the most performant algorithms

e For maximum speed on the server side we want to use ECDSA with
nistp256 parameters

e Intheory RSA keys (even with 3072 bits to achieve 128 bit security level)
would be better for CA certs as the speed of verification is better for RSA

o However this does not account for larger data transfer size for
the intermediate CA cert chain

e EdDSA has some better security properties than ECDSA and
could be probably optimized further but currently it is
slower than ECDSA with nistp256 on my hardware

OpenSSL Application Performance Tuning]PT&;H;SEE | 33

Choosing the most performant algorithms

e For maximum compatibility we can have both ECDSA and RSA
certificate on the server

e Setthe server upin away to prefer the ECDSA certificate if the client
supports it

e For TLS-1.2 we need to order ECDSA ciphers before the RSA
SSL_CTX_set_cipher_list(ctx,
"aECDSA:aRSA:-kRSA:-kDHE:-eNULL : -ARIA:-CAMELLIA");

OpenSSL Application Performance Tuning Mﬁ‘ﬁiﬁ | 34

Choosing the most performant algorithms

e For TLS-1.3 set the sigalgs
SSL_CTX_set1_sigalgs_list(ctx,
"ECDSA+SHA256 :ECDSA+SHA384 :ECDSA+SHA512 :ed25519:rsa_pss_pss
_sha256:rsa_pss_pss_sha384:rsa_pss_pss_sha512:rsa_pss_rsae_
sha256 :rsa_pss_rsae_sha384:rsa_pss_rsae_sha512:RSA+SHA256 :R
SA+SHA384 :RSA+SHA512 : ECDSA+SHA224 :RSA+SHA224") ;

e Setserver cipher preference: SSL_CTX_set_options(ctx,
SSL_OP_CIPHER_SERVER_PREFERENCE) ;
o This affects both ciphers and sigalgs

OpenSSL Application Performance Tuning]PT&;H;SEE | 35

https://docs.openssl.org/

OpenSSL Application Performance Tuning m%ﬁi{% | 36

https://docs.openssl.org/3.3/man3/

Y{olF/ojnrn(<=n){oF/oin(<=n){oF/o}tn(<=n){o]F/o}n(<=n)
In(<=n){oF/o}Aan(<=n){oJF/o}tAn(<=n){o]F/fotn(<=n){o]F/0}
Y{oJF/o}tAa(<=n){oJF/o}tan(<=n){oJF/o}tn(<=n){oJF/o}tn(<=n)

OpenSSL Application Performance Tuning

