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Agenda

● Building OpenSSL for optimal performance

● Optimizing EVP API usage

● Optimizing libssl API usage

● Choosing the most performant and secure algorithms
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Building OpenSSL for optimal performance
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● Avoid using no-asm – on Windows NASM must be installed

● Avoid using -d or --debug – that disables optimization

● Add enable-ec_nistp_64_gcc_128 if performance of P-521 (and 

P-384 on newer versions) ECDH/ECDSA is important

○ Requires 64 bit little endian platform

● Disable engines (no-engines) if not needed

● Disable DH (no-dh) or DSA (no-dsa) if not needed
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● Disabling various other unneeded features is possible

○ It will not affect speed mostly

○ It can lower the footprint of the library in memory

● By default -O3 is used

○ Try adding -O2 or -Os – these might provide better 

performance for your concrete use case and platform
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● Last but not least

○ Use the latest 3.x minor version as the performance is improved 

significantly from 3.0

○ Validated 3.0.8/3.0.9/3.1.2 FIPS providers can be used with the 

current library providing most of the performance benefits
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Minimal TLS implementation with reasonable compatibility and performance

OpenSSL Application Performance Tuning

Building OpenSSL for optimal performance

./Configure 
enable-ec_nistp_64_gcc_128

./Configure enable-ec_nistp_64_gcc_128 no-argon2 
no-aria no-async no-bf no-blake2 no-camellia 
no-cast no-cmp no-cms no-comp no-deprecated 
no-des no-dgram no-dh no-dsa no-ec2m no-engine 
no-gost no-http no-idea no-legacy no-md4 no-mdc2 
no-multiblock no-nextprotoneg no-ocb no-ocsp 
no-quic no-rc2 no-rc4 no-rmd160 no-scrypt no-seed 
no-siphash no-siv no-sm2 no-sm3 no-sm4 no-srp 
no-srtp no-ts no-whirlpool -Os

libcrypto size 6406968 bytes 4270496 bytes (smaller by 33%)

libssl size 1212920 bytes 701304 bytes (smaller by 42%)
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Optimizing EVP API usage 
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● With support for providers there is much greater flexibility and larger feature set

○ This comes at some costs

● We tried to maximize compatibility with old application code

○ Lazy initialization

■ More locking needed – affects multithreaded performance

○ Implicit algorithm fetching

■ Fetch is not a free operation, repeated identical fetches should

be avoided

○ Support for engines and low-level methods kept

■ Mostly raises the library footprint, does not affect the

performance directly
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 for (i = 0; i < num_calls; i++) {
     if ((mctx = EVP_MD_CTX_new()) == NULL)
         goto err;
     if (EVP_DigestInit(mctx, EVP_sha256()) <= 0)
         goto err;
     if (EVP_DigestUpdate(mctx, buf, sizeof(buf)) <= 0)
         goto err;
     if (EVP_DigestFinal(mctx, digest, &dlen) <= 0)
         goto err;
     EVP_MD_CTX_free(mctx);
 }

OpenSSL Application Performance Tuning

Let’s try to digest 64 bytes with SHA-256 repeatedly
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● This uses implicit fetch

○ EVP_sha256() is just a placeholder object containing the name of 

the algorithm

○ 0.39μs per one digest operation

● All numbers were measured on my AMD Ryzen based laptop

● With OpenSSL 3.3.1 version
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EVP_MD *md = EVP_MD_fetch(NULL, "SHA-256", NULL);
for (i = 0; i < num_calls; i++) {
    if ((mctx = EVP_MD_CTX_new()) == NULL)
        goto err;
    if (EVP_DigestInit(mctx, md) <= 0)
        goto err;
    if (EVP_DigestUpdate(mctx, buf, sizeof(buf)) <= 0)
        goto err;
    if (EVP_DigestFinal(mctx, digest, &dlen) <= 0)
        goto err;
    EVP_MD_CTX_free(mctx);
}
EVP_MD_free(md);
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What if we use explicit digest fetch
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● 0.24μs per one digest operation, this should be roughly equivalent to 

1.1.1

○ 38% shorter time

● But we can optimize a little bit more…
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EVP_MD *md = EVP_MD_fetch(NULL, "SHA-256", NULL);
if ((mctx = EVP_MD_CTX_new()) == NULL)

    goto err;

for (i = 0; i < num_calls; i++) {

    if (EVP_DigestInit(mctx, md) <= 0)

        goto err;

    if (EVP_DigestUpdate(mctx, buf, sizeof(buf)) <= 0)

        goto err;

    if (EVP_DigestFinal(mctx, digest, &dlen) <= 0)

        goto err;

}

EVP_MD_CTX_free(mctx);

EVP_MD_free(md);

OpenSSL Application Performance Tuning

No need to allocate and free the EVP_MD_CTX object inside the loop
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● 0.2μs per one digest operation

○ 49% shorter time

● Now we can apply this to symmetric encryption
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if ((cipher = EVP_CIPHER_fetch(NULL, "AES-256-CBC", NULL)) == NULL)
    goto err;
if ((ctx = EVP_CIPHER_CTX_new()) == NULL)
    goto err;
for (i = 0; i < num_calls; i++) {
    if (!EVP_EncryptInit_ex2(ctx, cipher, key, iv, NULL))
        goto err;
    if (!EVP_EncryptUpdate(ctx, ctbuf, &ctlen, ptbuf, sizeof(ptbuf)))
        goto err;
    if (!EVP_EncryptFinal_ex(ctx, ctbuf + ctlen, &ctlen))
        goto err;
}
EVP_CIPHER_CTX_free(ctx);
EVP_CIPHER_free(cipher);

OpenSSL Application Performance Tuning

Let’s say we need to encrypt 1024 bytes of plaintext with AES-256-CBC periodically
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● 1.16μs per one 1024 kB encryption
● But we are wasting computation time on something…
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if ((cipher = EVP_CIPHER_fetch(NULL, "AES-256-CBC", NULL)) == NULL)
    goto err;
if ((ctx = EVP_CIPHER_CTX_new()) == NULL)
    goto err;
if (!EVP_EncryptInit_ex2(ctx, cipher, key, NULL, NULL))
    goto err;
for (i = 0; i < num_calls; i++) {
    if (!EVP_EncryptInit_ex2(ctx, NULL, NULL, iv, NULL))
        goto err;
    if (!EVP_EncryptUpdate(ctx, ctbuf, &ctlen, ptbuf, sizeof(ptbuf)))
        goto err;
    if (!EVP_EncryptFinal_ex(ctx, ctbuf + ctlen, &ctlen))
        goto err;
}
EVP_CIPHER_CTX_free(ctx);
EVP_CIPHER_free(cipher);

OpenSSL Application Performance Tuning

We can reuse the preset key schedule
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● 0.94μs per one 1024 kB encryption
○ 19% shorter time

● What about composite algorithms? (HMAC, HKDF, etc.)
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if ((mac = EVP_MAC_fetch(NULL, "HMAC", NULL)) == NULL)
    goto err;
if ((mctx = EVP_MAC_CTX_new(mac)) == NULL)
    goto err;
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, (char *)digest_name,
                                             sizeof(digest_name));
params[1] = OSSL_PARAM_construct_end();
for (i = 0; i < num_calls; i++) {
    if (!EVP_MAC_init(mctx, key, sizeof(key), params))
        goto err;
    if (!EVP_MAC_update(mctx, buf, sizeof(buf)))
        goto err;
    if (!EVP_MAC_final(mctx, macbuf, &dlen, dlen))
        goto err;
}
EVP_MAC_ctx_free(mctx);
EVP_MAC_free(mac);

OpenSSL Application Performance Tuning

Periodically create a HMAC-SHA-256 of 200 bytes buffer with the same key
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● This takes 0.74μs per computation of HMAC-SHA-256 over 200 bytes 
buffer 

● However there are also some inefficiencies
○ The SHA-256 digest algorithm is internally fetched in the HMAC 

implementation
● Can we do better?
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if ((mac = EVP_MAC_fetch(NULL, "HMAC", NULL)) == NULL)
    goto err;
if ((mctx_tpl = EVP_MAC_CTX_new(mac)) == NULL)
    goto err;
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, (char *)digest_name,
                                             sizeof(digest_name));
params[1] = OSSL_PARAM_construct_end();
if (!EVP_MAC_init(mctx_tpl, key, sizeof(key), params))
    goto err;
for (i = 0; i < num_calls; i++) {
    if (((mctx = EVP_MAC_CTX_dup(mctx_tpl)) == NULL)
        goto err;
    if (!EVP_MAC_update(mctx, buf, sizeof(buf)))
        goto err;
    if (!EVP_MAC_final(mctx, macbuf, &dlen, dlen))
        goto err;
    EVP_MAC_CTX_free(mctx);
    mctx = NULL;
}
...

OpenSSL Application Performance Tuning

Periodically create a HMAC-SHA-256 of 200 bytes buffer with the same key
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● This takes 0.7μs per computation as we spare both the fetch and the 

internal initialization of hash context(s)

○ 5% shorter time

● If the key is different we could still use the duplication trick

○ Not showing the code here, left as exercise for you

○ However the context duplication overhead is larger

than the internal fetch

○ Requires 0.921μs per computation
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Optimizing libssl usage 
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● TLS client
○ Create and preset the SSL_CTX with CA cert store

■ Use the same SSL_CTX with multiple client connections 
instead of creating it repeatedly for every connection

■ Requires 995μs vs 1100μs to do handshake when the client 
SSL_CTX is shared

○ Use the cert directory store instead of the cert file store
for CA certificates
■ Use SSL_CTX_load_verify_dir() instead of

SSL_CTX_load_verify_file()
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● SSL_SESSION reuse on the TLS client
○ SSL session caching is enabled by default on the server
○ But not on the client side
○ Even if enabled libssl does not use the cached SSL_SESSION 

entries automatically as only the application knows when the 
session can be reused

● There is one exception. When an SSL object is reused for a 
subsequent connection, there is already a SSL_SESSION
present in the SSL object.
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● Avoid using expensive key exchange algorithms
○ Disable RSA and DHE key exchange

■ For TLS-1.2: SSL_CTX_set_cipher_list(ssl, "DEFAULT:-kRSA:-kDHE");
■ For TLS-1.3 we need to list the allowed groups

● For example: SSL_set1_groups_list(ssl, 
"X25519:P-256");

■ Whether X25519 is faster than P-256 depends on the 
platform
● On my laptop one X25519 takes 27.5μs,

P-256 takes 41.2μs
● X25519 is not FIPS approved though
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How do you choose the most performant algorithms?



Choosing the most performant algorithms

OpenSSL Application Performance Tuning |    29

● We started on this topic already
● Never put performance over security

○ Really, so should I always use crypto with at least 256 bit security?
○ That would be silly, so better idea is to say – stick with some 

minimum security level depending on your requirements (i.e. 128 bit 
security should be sufficient for all use cases except where 256 bit
is mandatory).

○ Use the right algorithm for the job (example: AES-ECB mode 
encryption is fast, but never the right answer)
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● Which algorithm should I use to 

symmetrically encrypt some raw 

data?

● Use an AEAD cipher to protect 

both confidentiality and integrity 

of the data.

● To measure use:  openssl 
speed -evp <algorithm>
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Choosing the most performant algorithms

Cipher Number of bytes processed per 
second (with 16KiB blocks)

AES-128-GCM 4986 MB/s

AES-128-CCM 1569 MB/s

AES-128-OCB 9031 MB/s

ChaCha20-Poly1305 2315 MB/s
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● The AES-128-OCB is the fastest from these on my hardware

● The results might be very different on different CPU architectures 

but even different CPUs of the same base architecture

○ For example on CPUs without AES-NI on x86 (or similar 

instructions on other platforms) the ChaCha20-Poly1305 

algorithm will be the fastest one by large margin

● Use openssl speed to measure not only the speed of

ciphers but also digests, signatures, key exchanges, etc.
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● Which algorithm to choose for certificates?

● Use openssl speed to measure RSA vs ECDSA and EdDSA
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Choosing the most performant algorithms

Algorithm signatures/s verifications/s

ECDSA (nistp256) 56539.3 18541.4

RSA-2048 2003.7 69798.3

RSA-3072 660.1 33510.8

EdDSA (Ed25519) 27025.4 10037.5
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● For maximum speed on the server side we want to use ECDSA with 

nistp256 parameters

● In theory RSA keys (even with 3072 bits to achieve 128 bit security level) 

would be better for CA certs as the speed of verification is better for RSA

○ However this does not account for larger data transfer size for

the intermediate CA cert chain

● EdDSA has some better security properties than ECDSA and

could be probably optimized further but currently it is

slower than ECDSA with nistp256 on my hardware
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● For maximum compatibility we can have both ECDSA and RSA 

certificate on the server

● Set the server up in a way to prefer the ECDSA certificate if the client 

supports it

● For TLS-1.2 we need to order ECDSA ciphers before the RSA 

SSL_CTX_set_cipher_list(ctx, 
"aECDSA:aRSA:-kRSA:-kDHE:-eNULL:-ARIA:-CAMELLIA");
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● For TLS-1.3 set the sigalgs

SSL_CTX_set1_sigalgs_list(ctx, 
"ECDSA+SHA256:ECDSA+SHA384:ECDSA+SHA512:ed25519:rsa_pss_pss
_sha256:rsa_pss_pss_sha384:rsa_pss_pss_sha512:rsa_pss_rsae_
sha256:rsa_pss_rsae_sha384:rsa_pss_rsae_sha512:RSA+SHA256:R
SA+SHA384:RSA+SHA512:ECDSA+SHA224:RSA+SHA224");

● Set server cipher preference: SSL_CTX_set_options(ctx, 

SSL_OP_CIPHER_SERVER_PREFERENCE); 

○ This affects both ciphers and sigalgs
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Further reading
https://docs.openssl.org/

https://docs.openssl.org/3.3/man3/
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Thank you! & Questions?


