
  
1/13

Encrypted Client Hello – Lessons learned
from trying to do something that was

probably too complicated

Dr. Stephen Farrell
Trinity College Dublin
stephen.farrell@cs.tcd.ie 

OpenSSL Conference
October 2025

mailto:stephen.farrell@cs.tcd.ie


  
2/13

This talk’s point-of-view
● The lessons here are from the point-of-view of someone 

aiming to contribute to upstream projects (like OpenSSL) 
who is not a maintainer

● There may be implied lessons for maintainers of such 
projects too, but it’d be presumptive of me to state those
– Implications may well be implied though:-)

● There are lessons for standards development 
organisations, but that’d (mostly) be a different talk



  
3/13

Obvious/Generic “Lessons” (1/2)
● Lesson: Don’t try for huge changes to upstream

– Turns out, huge/intrusive changes to OpenSSL code are 
what ECH requires;-(

– Changes to application upstreams are much more modest 
though

● Lesson: Upstreams have pointlessly different styles
– Live with ‘em nonetheless, mostly just an irritant
– Maintainers do try help though, they know style is local



  
4/13

Obvious/Generic “Lessons” (2/2)
● Lesson: Be nice, maybe even a bit deferential

– Maintainers will live with the code for a lot longer

● Lesson: Figure out who’s actually in control
– Not hard, but not all PR comments are equal
– But don’t disregard non-maintainer comments



  
5/13

What’s ECH?

● SNI is a privacy leak, be nice to encrypt that
● Spec: draft-ietf-tls-esni

– Started 2018, still not quite done yet (but close)
● Encrypted ClientHello (ECH) allows a 

cleint/browser to encrypt sensitive parts of the TLS 
ClientHello, primarily the server name indication 
(SNI), if the server has published a public-key 
(ECHConfig) in the DNS



  
6/13

It began simply enough
● RFC 8744 documents Issues and Requirements for Server 

Name Identification (SNI) Encryption in TLS
● Initially draft-ietf-tls-esni proposed to add a new TLS 

extension (ESNI) with a ciphertext form of the SNI and a TXT 
RR for publishing a public key

● I was looking for something to do
● Nobody was coding up ESNI for OpenSSL
● Looks like I started on that around November 2018
● Implementing ESNI wasn’t too hard



  
7/13

DEfO project
● DEfO == “Developing ECH for OpenSSL”

– https://defo.ie/ started in 2019, ongoing

– Funded by Open Tech Fund (OTF), who’ve been great

● Goal: encourage ECH implementation and deployment by contributing to existing 
open-source projects

● Non-goal: creating some new everlasting project
● Lesson: It’s very useful to have deadlines, deliverables and a few quid
● Lesson: Teams do some stuff better

– We got lucky in DEfO, teaming up with really excellent people (mainly from Guardian Project)

– E.g. the DEfO CI setup https://github.com/defo-project/ 

https://defo.ie/
https://github.com/defo-project/


  
8/13

DEfO Project
● Scope includes work to ECH-enable applications

– Code upstreamed: curl, lighttpd, apache2, OONI
– PRs/patches: haproxy, nginx, cPython

● Some of the above support multipleTLS libraries, 
e.g., BoringSSL, AWS-LS, WolfSSL

● Lesson: >1 important TLS library in the world



  
9/13

ESNI -> ECHO -> ECH
● Early ESNI drafts used an ad-hoc way of encrypting the 

SNI, yet TLSv1.3 has good cryptgraphic proofs, so that 
wasn’t desirable

● HPKE (RFC9180) was developed partly to regularise 
that – it provides a good way to encrypt a message “to” a 
public key
– RFC9180 has way too many options, arguing against such is 

generally a losing position
– At least, initially



  
10/13

OpenSSL PR#17172 (HPKE)
● Opened Nov 2021, took nearly a year, 4.5kLOC
● I learned a lot in doing that
● Followed up with an OTF-funded pentester code review

– https://7asecurity.com/reports/pentest-report-defo-2.pdf 
● Lesson: stick at it
● Lesson: I wouldn’t start from there if I were you
● Lesson: be willing to accept maintainer help when 

offered 

https://7asecurity.com/reports/pentest-report-defo-2.pdf


  
11/13

ECH DNS issues
● ESNI used a TXT RR: undesirable for various 

reasons
– See `dig txt tcd.ie` output for why:-)

● Development of HTTPS RR, including go-faster-
stripes for browsers, was likely required for 
browser enthusiasm, result: RFC9460

● Lesson: you don’t control the ecosystem but 
understanding incentives is very useful



  
12/13

ECH feature branch
● OpenSSL ECH feature branch created April 2024, 

7 PRs merged since, one currently open 
(s_client/s_server), maybe 2 more for completion 
(test code)
– Not including ECH “split-mode” (TBD later)

● Adds 10kLOC so far;-) And those lines are 
scattered over a lot of the TLSv1.3 code

● Lesson: maintainer response times are bursty



  
13/13

Overall
● It’s time-consuming and sometimes frustratning 

to try do something that’s probably too 
complicated
– But hey – you walked into it with eyes open:-)

● Despite the above, DEfO is finally getting closer 
to done, and I can hope to not be working much 
on ECH in the not too distant future


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

