7 -

v

Adoption Trends & Cryptographic Algorithms in
Internet Communication Protocols??

(TLS variants, QUIC, IPSec, OAuth, SSH)

Adoption Stats and Algorithm: TLS (and its variants)

« ECDHE key exchange with P-256/P-384 curves, ECDSA/RSA authentication
e Cipher suites: TLS_AES_256_GCM_SHA384 with ECDHE-P256 key agreement

96% of Chrome browsing time occurs over HTTPS connections

87.6% of the Websites Use a Valid SSL Certificate
— Across Google Mar 3, 2024
Across Google: 96%

100%

90 + 90% _ﬁ,f*—f_NU_FL__Jw_ﬂ_mr_’-_u_w__m___-_m_w i
- - [P o

80% s
80 -+ /a_ﬁ,ﬁm’

p

’_"‘J

70 + “0cs f_,f’
60 —+ 50% r/I

40%
50 -+

30%
40 —+ 20%

'I:j\'.")
30 4

J%i‘:C'I,EO'I-'i Jan 01,2016 Jan 01,2018 Jan 01, 2020 Jan 01, 2022 Apr 01,2023 Jan 01,
20 + 2024
101 Source: https://sslinsights.com/ssl-certificates-statistics/

0
1Ju24 1Aug 1Sep 10ct 1Nov 1Dec 1Jan25 1Feb 1Mar 1Apr 1May 1Jun 1Ju
Usage of Default protocol https for websites, 29 Jul 2025, W3Techs.com

https://sslinsights.com/ssl-certificates-statistics/

Adoption Stats and Algorithm: QUIC

« Mandatory TLS 1.3 integration for all QUIC

implementations None I 0.9%
e Inherits TLS 1.3's ECDHE key exchange and css 96.1%
ECDSA/RSA signatures Compression HE—— 90.0%

Default protocol https I, ga.79

Cookies

Default subdomain www

About 35.8 % of websites advertise HTTP/3 support p——
(via Alt-Svc headers or DNS) e

HTTP Strict Transport Security

IPvG

ETag

-
About 8.8 % of websites include QUIC in their tech stack ¢ | Quic

Frameset

W3Techs.com, 18 September 2025

Percentages of websites using various site elements
Mote: a website may use more than one site element

Source: https://w3techs.com/technologies/overview/site_element

https://w3techs.com/technologies/overview/site_element

Adoption Stats and Algorithm: IPSec

e A significant portion of Internet users (~ 23-25 %) worldwide employ VPN services for privacy or

security as of 2024
 IKEv2 with ECDHE group 19 (P-256) key exchange - most common
e Primarily AES-GCM with HMAC-SHA-256 authentication

Global IP Security (IPSec) VERIFIED
Market Size and Scope NMA REPORTS

Top IP Security (IPSec) Market Companies

Microsoft Dialogic Corp
Cisco @ TOp Key @ icsson
Players
2024 2025 2033
IBM JHbﬂ Il North America W Europe [Asia-Pacific | Middle East Latin America

Expected growth of upto 25.7B by 2033, about 8.8% CAGR from 2024

‘‘‘‘‘‘‘ .
12,5 Billion)
-

N.

| |

8.8%
CAGR from 2024 to 2033

Global IP Security
(IPSec) Market size was
valued at USD 12.5
billion in 2024 and is
projected to reach USD
25.7 billion by 2033

UNIT : Value (USD Million/Billion)
>
<
<
>

Source: https://www.verifiedmarRetreports.com/product/ip-security-ipsec-market/

https://www.verifiedmarketreports.com/product/ip-security-ipsec-market/

Adoption Stats and Algorithm: SSH

« Key exchange algorithms: curve25519-sha256 (most common), ecdh-sha2-nistp256

e Host key types: ssh-ed25519, ecdsa-sha2-nistp256, rsa-sha2-512

e Entire session security depends on ECDH key exchange

Cloud Provider Console Access : SSH (22)

Discovered

2000, 000

Modes

1.500.000

1,000,000
o I
B - —_—

Amazon Alibaoba DigitalOcean Google OVHcloud Microsoft Scaleway racle QuadraNet Rackspace

Source: https://www.rapid7.com/blog/post/2020/08/28/nicer-protocol-deep-dive-secure-shell-ssh/

https://www.rapid7.com/blog/post/2020/08/28/nicer-protocol-deep-dive-secure-shell-ssh/

Adoption Stats and Algorithm: OAuth

NGKORE

(Google
|
Apple
5%
Most used social login methods : -
among companies using AuthO -
B
Salestforce |aw
{ 0%
B
N——9 GitHub =
4%
0% 25%; 20% 15% 100%,
. Loggins Lisare . Apps

Source: https://assets.ctfassets.net/2ntc334xpx65/77UISLFO7rD7t9zdI6Q1SV/a8e2054b5affc0280769516eee70b0ea/Social-Login-Report.pdf

« RSA/ECDSA signatures for JWT validation, relies on TLS for transport security
e Token integrity depends entirely on classical signature algorithms

https://assets.ctfassets.net/2ntc334xpx65/77U9sLFO7rD7t9zdI6Q1SV/a8e2054b5affc0280769516eee70b0ea/Social-Login-Report.pdf

Y
Why These Numbers Matter 'ﬁ

Dependence on Classical Cryptography!! —

Domain Technology References Classical Algorithm Quantum Risk Type
r TLS 1.2/1.3 (HTTPS, QUIC, SMTPS/IMAPS, 112], [22 R5A, ECDHE, ECDSA HTDL (ECDHE); cert/signature forgery -:
: LDAPs) (RSA/ECDSA) |
1 IPsec / IKEv2 [13] RSA. (EC)DH, ECDSA HTDL + authentication forgery :
I T e S55H [24], |26] RSA, ECDSA, EdA25519, X25519 HTDL (KEX); key/signature forgery I
: = § WireGuard [27] X25519 HTDL (session decryption) :
1 53 Wi-Fi Enterprise (EAP-TLS) [25] RSAECDSA (X.509), ECDHE HTDL: cert forgery I
: = £ WPAS-5AE [29] Finite-field/ ECC PAKE DL break — session compromise |
| Bluetooth LE Secure Connections [30} ECDH P-256 HTDL: impersonation :
I Tor (1dentities + TLS) [31] Ed25519; RSAJECDSA (TLS) Identity forgery; HTDL I
: Signal (X3DH, Double Ratchet, PQXDH) [32]. [20] X25519, Ed25519; hybrid ML-KEM Legacy HTDL + signature forgery; PQ-resistant for :
: session keys (PQXDH) "
Web PKI1 (X.509) [33] RS5A. ECDSA Certificate forgery
° = S/MIME (CMS5) [34], |35]. |36] R5A, ECDSA, ECDH SignedData forgery; HTDL decryption
= = OpenPGP / GPG [37] RSA, ECC, ElGamal Signature forgery; HTDL if EC-DH used
DEIM [41], [42] RSA:; BEd2551WECDSA Domain signature forgery
r = JWT/AIWS (OAuth2, OIDC) [43], [44], [453] R5256/P5256/ES256 Token forgery :
1 =2 E SAML 2.0 (XMLDSIG) [46] R5A, ECDSA Assertion forgery |
: EU w WebAuthn / FIDO2 [47], [48] ES52536, EADSA Credential forgery :
: 3 DMSSEC [449], [50] RSA, ECDSA, EdDSA Zone/RRset forgery :
1 = RPKI / BGPsec 151], [52] RSA. ECDSA ROA/path forgery |
: . Certificate Transparency [53] RSA, ECDSA Log/STH forgery JI
= Code signing (OS, apps, APKs) |54, [55], |57] RS5A, ECDSA (X.504) Binary/firmware forgery
& = Package managers (APT, RPM, etc.) 53], [60] OpenPGP/GPG Repository/package forgery
:é I:i Secure Boot (UEFI) [62] R5A-2045; ECDSA-384 Bootloader/firmware forgery
E = Sigstore / Cosign [67] X309/0IDC (RSA/ECC) Container/artifact forgery
] Gil (commits, tags) [6F] OpenPGP; X.509; SSH Commit/tag forgery
" PAdES, CAdES, XAdES [69], [70]. [71]. RSA. ECDSA (CMS/X.509) Document/signature forgery
$ E 72]
A B EMYV (chip, POS, NFC) 175], [77], [78] RS5A-2048, ECC P-256 Offline Tx forgery
= ePassports / elDs [81], [82] RS5A, ECD5SA CSCA/DS forgery
Blockchain (Bitcoin, Ethereum, Solana) [84], [8T]. [89] ECDSA secp256kl; Ed25519 Tx/signature forgery: HTDL

Source: https://arxiv.org/pdf/2509.24623

https://arxiv.org/pdf/2509.24623

111
Progress Towards Quantum-Resilient Security:

Advancement in PQC

Foundation for PQC i

« Major security bodies—CISA, NSA, NCSC UK,
NIST Releases First 3 Finalized Post-Quantum Encryption DoD, and ENISA—immediately endorsed these

Standards standards and published migration guidance

August 13,2024

- Federal agencies mandated inventory and

While there have been no substantive changes made to the standards since the draft versions, migration plans via OMB M-23-02 and NSM-

NIST has changed the algorithms’ names to specify the versions that appear in the three 10, with 2035 as the target deadline
finalized standards, which are:

s Federal Information Processing Standard (FIPS) 203, intended as the primary standard for - EU and UK national cybersecur"ty centers set

general encryption. Among its advantages are comparatively small encryption keys that two PQC migration timelines thI'OU.gh 2035,
parties can exchange easily, as well as its speed of operation. The standard is based on req uiring phClSGd depLoyments and annual
the CRYSTALS-Kyber algorithm, which has been renamed ML-KEM, short for Module-Lattice- progress reporting
Based Key-Encapsulation Mechanism.

o FIPS 204, intended as the primary standard for protecting digital signatures. The standard uses . Cloud providers (AWS, Azure, GoogLe Cloud)

the CRYSTALS-Dilithium algorithm, which has been renamed ML-DSA, short for Module-Lattice-
Based Digital Signature Algorithm.

published PQC policy pages enforcing hybrid

e FIPS 205, also designed for digital signatures. The standard employs the Sphincs+ algorithm, key exchanges and PQC-compatlble

which has been renamed SLH-DSA, short for Stateless Hash-Based Digital Signature Algorithm. certificates for all new workloads
The standard is based on a different math approach than ML-DSA, and it is intended as a backup
method in case ML-DSA proves vulnerable.

Source: https://www.nist.gov/news-events/news/2024/08/nist-releases- first-3-finalized-post-quantum-encryption-standards

https://www.nist.gov/news-events/news/2024/08/nist-releases-first-3-finalized-post-quantum-encryption-standards

Where’s the Problem? o

« PQ versions of major protocols —TLS, SSH, IPsec, OAuth, and DTLS— are not fully standardized
« Waiting is risky. Delaying migration invites “harvest-now, decrypt-later” attacks, where adversaries

capture encrypted data today for decryption once quantum computers become practical

October 9, 2025

Protocol Migration in Practice: From Classical to
Post-Quantum Cryptography with OpenSSL

OpenSSL Conference Prague 2025

Who Are We?

Shankar Malik Shubham Kumar
e Governing Board Committer Representative @LF Networking (LFN) * Mentor @LF Decentralized Trust (LFDT)
e TSC Member @5G 5G SBP & @L3AF Project e NgKore’s Representative @PKI Consortium

o Chief Architect @NgKore Community (Co-founder) * SW Engineer @NgKore Community (Co-founder)

NGKORE

Project Overview — pqgproto
e TLS

o mTLS

o DTLS
e QUIC
IPSec
SSH & OAuth (WIP)
Challenges in PQC Migration

Migration Strategy & Best Practices

Our Implementations & Real-World Applications

Project Overview - pqproto

A simplified prototype showcasing classical and post-quantum secure client-server communication.
e Purpose: Demonstrates how to migrate classical cryptographic protocols to post-quantum (PQ)
alternatives.
e Protocols Covered: TLS, mTLS, DTLS, QUIC, IPsec, OAuth, and SSH (more in the future)
e Implementation Style: Command-Lline (CLI)-based client-server setup for easy testing and
automation
e Core Libraries & Tools:
o OpenSSL with PQC support (v3.5.0 & above)
o libogs and ogs-provider for hybrid/PQ key exchange and signatures
o strongSwan for IPsec integration
o Circl and other PQC libraries for algorithm diversity
e Repository: https://github.com/ngkore/pgproto

https://github.com/ngkore/pqproto

TLS (Transport Layer Security)

e A cryptographic protocol that encrypts data to secure communications over the internet
e Core Guarantees: Confidentiality, Integrity, Authentication

e Operates over TCP at the transport Layer

e Negotiates the highest supported version (typically TLS 1.3 or TLS 1.2)

e OpenSSL 3.5 TLS Guide: https://docs.openssl.org/3.5/man7/ossl-guide-tls-introduction/

e Simple Echo Client/Server Demo: https://github.com/openssl/openssl/tree/master/demos/sslecho

e pgproto Classical and PQ-Support TLS1.3 Client/Server Setup -
OpenSSL 3.5 Final Rel - Li
https://github.com/ngkore/pgproto/tree/main/tls . inal Release - Live

The final release of OpenSSL 3.5 is now live. We would like to thank all those who contributed to the OpenSSL 3.5

release, without whom the OpenSSL Library would not be possible.

This release adds the following new features:

+ Support for server side QUIC (RFC 9000)

» Support for 3rd party QUIC stacks including 0-RTT support

» Support added for opaque symmetric key objects (EVP_SKEY)

« A new configuration option no-tls-deprecated-ec to disable support for TLS groups deprecated in RFC8422
« A new configuration option enable-fips-jitter to make the FIPS provider to use the JITTER seed source

+ Support for central key generation in CMP

= Support for multiple TLS keyshares and improved TLS key establishment group configurability

« API support for pipelining in provided cipher algorithms

Source: https://openssl-corporation.org/post/2025-04-08-openssl-35-final-release/

https://docs.openssl.org/3.5/man7/ossl-guide-tls-introduction/
https://github.com/openssl/openssl/tree/master/demos/sslecho
https://github.com/ngkore/pqproto/tree/main/tls
https://openssl-corporation.org/post/2025-04-08-openssl-35-final-release/

TLS: Algorithms and Cipher Suites

A NGKORE

S openssl ciphers -v 'ALL:COMPLEMENTOFALL' | grep TLSv1.3
Kx=any Au=any Enc=AESGCM(256) Mac=AEAD
Kx=any Au=any Enc=CHACHA20/POLY1305(256) Mac=AEAD
Kx=any Au=any Enc=AESGCM(128) Mac=AEAD

ubuntu@strongswan:
TLS_AES_256_GCM_SHA384
TLS_CHACHA20_POLY1305_SHA256
TLS_AES_128_ GCM_SHA256

Cipher Suites
—>

S openssl list -kem-algorithms | grep -1 mlkem
512 } @ default
768 } @ default

1024 } @ default

ubuntu@strongswan:
{ 2.16.840.1.101.3.4.4.1, id-alg-ml-kem-512, ML-KEM-512,
{ 2.16.840.1.101.3.4.4.2, id-alg-ml-kem-768, ML-KEM-768,
{ 2.16.840.1.101.3.4.4.3, id-alg-ml-kem-1024, ML-KEM-1024,
X25519 768 @ default
X448 1024 @ default
SecP256r1 768 @ default
SecP384r1 1024 @ default

KEM Algorithms
4‘.....

ubuntu@strongswan: S openssl list -signature-algorithms | grep -i mldsa
{ 2.16.840.1.101.3.4.3.17, i1d-ml-dsa-44, ML-DSA-44, 44 } @ default
{ 2.16.840.1.101.3.4.3.18, i1d-ml-dsa-65, ML-DSA-65, 65 } @ default
{ 2.16.840.1.101.3.4.3.19, id-ml-dsa-87, ML-DSA-87, 87 } @ default

ubuntu@strongswan: S

ubuntu@strongswan: S openssl list -signature-algorithms | grep -i slh

Signature Algorithms
—b

e W e Wt B e Wt B e Mo B e M B e Mt R st

2.

MR R AN AMMNRMRAMR PR

16.
.16.
.16.
.16.
.16.
.16.
.16.
.16.
.16.
.16.
.16.
.16.

840

840.
840.
840.
840.
840.
840.
840.
840.
840.
840.
840.

1.

(S S R R T ==

101.3. .
.101.3.4.3.
.101.3.4.3.
.101.3.
.101.3.
.101.3.4.3.
.101.3.4.3.
.101.3.
.101.3.4.3.
.101.3.
.101.3.
.101.3.

Wb b W W W W
b bhbabhbhbbabhbhbARAR
W o W w W wwiwwww

id-
id-
id-
id-
id-
id-
id-
id-
id-
id-
id-
id-

-dsa-sha2-128s,
-dsa-sha2-128f,
-dsa-sha2-192s,
-dsa-sha2-192f,
-dsa-sha2-256s,
-dsa-sha2-256f,
-dsa-shake-128s,
-dsa-shake-128f,
-dsa-shake-192s,
-dsa-shake-192f,
-dsa-shake-256s,
-dsa-shake-256f,

-DSA-SHA2-128s } @ default
-DSA-SHA2-128f } @ default
-DSA-SHA2-192s } @ default
-DSA-SHA2-192f } @ default
-DSA-SHA2-256s } @ default
-DSA-SHA2-256f } @ default
-DSA-SHAKE-128s } @ default
-DSA-SHAKE-128f } @ default
-DSA-SHAKE-192s } @ default
-DSA-SHAKE-192f } @ default
-DSA-SHAKE-256s } @ default
-DSA-SHAKE-256f } @ default

Note: More Algorithm and cipher suites can be used with libogs/OQS Provider additions

TLS Connection Phases

NGKORE

1. Setup Phase 3. Application Data Transfer
e Create and configure SSL_CTX e Secure bidirectional communication using
e Configure cryptographic parameters: established session keys
o SSL_CTX_setl_sigalgs_list() - signature » Read/write application data through SSL
algorithms object
o SSL_CTX_set1_groups_list() - supported e Protocol-level messages may still be
groups exchanged alongside application data
e Load certificates and private keys 4. Shutdown Phase
e Create SSL object and associate with socket/BIO e Send close_notify alert to initiate graceful
2. Handshake Phase shutdown
e ClientHello/ServerHello exchange (cipher e Receive close_notify response from peer

negotiation) e Clean up SSL objects and close underlying

e Certificate verification and key exchange sockets

« Complete with Finished messages

TLS (PQ-Support): Terminal Logs Rcrons

ubuntu@strongswan:~/pgproto/tls/pq-support$./server --port 8443 ubuntu@strongswan:~/pgproto/tls/pg-support$./client --host localhost --port 8443
=== Post-Quantum TLS 1.3 Echo Server === === Post-Quantum TLS 1.3 Client ===

. . SSL context created with TLS 1.3 enforcement (required for post-quantum
SSL context created with TLS 1.3 enforcement (required for post-quantum) e N T e e '{[:"orqc'l.'i.ent R)

Post-quantum signature algorithms configured Post-quantum key exchange groups configured for client
Post-quantum key exchange groups configured Post-quantum CA certificate loaded from ./certs/ca-cert.pem

Post-quantum server certificate loaded from ./certs/server-cert.pem Post-quantum server certificate verification enabled
Post-quantum server private key loaded from ./certs/server-key.pem Resolved localhost to 127.6.6.1

. e . . Connected to post-quantum TLS server localhost:8443
Post-quantum certificate and private key match verified SNI hostname set to: Llocalhost

Hostname verification enabled for: localhost
=== Certificate & Key === Starting post-quantum TLS handshake...

Certificate algorithm: ML-DSA-65 Post-quantum TLS handshake successful!

Certificate key size: 15616 bits B

Private key algorithm: ML-DSA-65 (15616 bits) TLS version: TLSv1.3

Cipher suite: TLS_AES_256_GCM_SHA384
Key exchange: X25519MLKEM768

Post-quantum TLS server listening on port 8443 Peer signature algorithm: mldsaé5

Post-quantum TLS 1.3 server ready. Press Ctrl+C to stop.

New connection from 127.0.0.1:35770 === Server Certificate ===
Starting post-quantum TLS handshake... Certificate algorithm: ML-DSA-65
Post-quantum TLS handshake successful Certificate key size: 15616 bits

=== TLS '-::'DI"II"IECt"-'Dn —= Post-quantum TLS connection established! Type messages to send to server (Ctrl+C to exit):
TLS version: TLSv1.3 > hi, there!

Cipher suite: TLS_AES_256_GCM_SHA384 Server echoed: hi, there!
Key exchange: X25519MLKEM768
Server signature: mldsaé65s

Client connected. Starting echo service... .
Client sent: hi, there! ‘— EChO Server Cl-lent

Server echoed: hi, there!

mTLS (Mutual Transport Layer Security)

« mTLS connection setup is identical to the standard TLS client/server configuration

e The only difference is the client certificate verification on the server side -

SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NQO_PEER_CERT, verify_client_callbacR)

e pgproto Classical and PQ-Support mTLS1.3 Client/Server Setup -
https://github.com/ngkore/pgproto/tree/main/mtls

https://github.com/chmodshubham/pqproto/tree/main/mtls

mTLS (PQ-support): Terminal Logs

NGKORE

ubuntu@strongswan:~/pqproto/ ubuntu@strongswan:~/pqproto/mtls/pq-support$./client --host localhost --port 8443
=== Post-Quantum mTLS 1.3 Echo Server === === Post-Quantum mTLS 1.3 Client ===

SSL context created with TLS 1.3 enforcement (required for post-quantum mTLS) SSL context created with TLS 1.3 enforcement (required for post-quantum mTLS)

Post-quantum signature algorithms configured for mTLS server
Warning: Could not set post-quantum groups list

Server certificate loaded from ./certs/server-cert.pem
Server private key loaded from ./certs/server-key.pem

Server certificate and private key match verified

CA certificate loaded for client verification

Client certificate verification enabled (post-quantum mutual TLS)
=== Server Certificate & Key ===

Server certificate algorithm: ML-DSA-65

Server certificate key size: 15616 bits

Server private key algorithm: ML-DSA-65 (15616 bits) |

Post-quantum mTLS server listening on port 8443
Post-quantum mTLS 1.3 server ready. Press Ctrl+C to stop.
New connection from 127.0.0.1:37104

Starting post-quantum mTLS handshake...
Certificate verification: depth=1, preverify_ok=1
Certificate verification successful

Certificate verification: depth=0, preverify_ok=1
Certificate verification successful

Post-quantum mTLS handshake successful Echo

=== Post-Quantum mTLS Connection ===

TLS version: TLSv1.3 S n,
Cipher suite: TLS_AES_256_GCM_SHA384 e er
Key exchange: X25519MLKEM768

Server signature: mldsa65

Client signature: mldsa65

=== Client Certificate ===

Client subject: [C=US/ST=Test/L=Test/0=Test PQ Client/CN=Test PQ Client
issuer: [C=US/ST=Test/L=Test/0=Test PQ CA/CN=Test PQ CA
certificate algorithm: ML-DSA-65
certificate key size: 15616 bits

connected with post-quantum mTLS. Starting echo service...
sent: hi there, team!!
echoed: hi there, team!!

Post-quantum signature algorithms configured for mTLS client
Warning: Could not set post-quantum groups list

Client certificate loaded from ./certs/client-cert.pem
Client private key loaded from ./certs/client-key.penm

Client certificate and private key match verified

CA certificate loaded from ./certs/ca-cert.penm

Server certificate verification enabled

=== Client Certificate & Key ===

Client subject: /C=US/ST=Test/L=Test/0=Test PQ Client/CN=Test PQ Client 1

Client certificate algorithm: ML-DSA-65
Client certificate key size: 15616 bits
Client private key algorithm: ML-DSA-65 (15616 bits)

Resolved localhost to 127.0.0.1
Connected to post-quantum mTLS server localhost:8443
SNI hostname set to: localhost

Hostname verification enabled for: localhost
Starting post-quantum mTLS handshake...

Post-quantum mTLS handshake successful!

=== Post-Quantum mTLS Connection ===
TLS version: TLSv1.3

Cipher suite: TLS_AES_256_GCM_SHA384
Key exchange: X25519MLKEM768

Server signature algorithm: mldsaé5
Client signature algorithm: mldsa65

T T e el

=== Server Certificate ===

Server subject: [C=US/ST=Test/L=Test/0=Test PQ/CN=Llocalhost
Server issuer: [C=US/ST=Test/L=Test/0=Test PQ CA/CN=Test PQ CA
Server certificate algorithm: ML-DSA-65

Server certificate key size: 15616 bits

Post-quantum mTLS connection established! Type messages to send to server (Ctrl+C to exit):
> hi there, team!!
Server echoed: hi there, team!!

DTLS (Datagram Transport Layer Security)

e DTLS connection setup is slightly different from a standard TLS client/server configuration
e TLS runs over TCP, where reliability is critical, while DTLS runs over UDP, prioritizing speed and low
latency
e Add cookie secrets in the SSL context for client verification to help mitigate DoS attacks.
e OpenSSL 3.5.3 does not yet support DTLS 1.3 (still in development):
o Branch (dtls-1.3) - https://github.com/openssl/openssl/tree/feature/dtls-1.3
o Available for testing with PQ-support using ogs-provider and Llibogs

e Testing performed with DTLS 1.2 client/server setup
e No post-quantum support in DTLS 1.2—implementation currently runs in classical mode only

e Prototype reference: https://github.com/ngkore/pgproto/tree/main/dtls

Comcast Innovation Fund supports work on DTLSv1.3

Oct 1, 2025

https://github.com/openssl/openssl/tree/feature/dtls-1.3
https://github.com/ngkore/pqproto/tree/main/dtls

QUIC (Quick UDP Internet Connections)

e Traditional web stack uses TCP + TLS + HTTP: TCP ensures reliability, TLS provides encryption, and
HTTP/2 offers efficiency

« QUIC combines all three Layers into one protocol, streamlining connection setup and reducing Latency.

e QUIC builds on top of UDP, not replacing TCP/UDP, but avoiding protocol ossification while maintaining
flexibility

e OpenSSL QUIC introduction: https://docs.openssl.org/master/mant/ossl-guide-quic-

introduction/##what-is-quic

e OpenSSL QUIC source: https://github.com/openssl/openssl/tree/master/ssl/quic

e Demo setups:

o HTTP/1-based QUIC client/server - https://github.com/openssl/openssl/tree/master/demos/quic
o HTTP/3 client/server - https://github.com/openssl/openssl/tree/master/demos/http3

e Single-stream QUIC client/echo server implemented in classical and post-quantum (PQ) support

modes - https://github.com/ngRore/pgproto/tree/main/quic

https://docs.openssl.org/master/man7/ossl-guide-quic-introduction/#what-is-quic
https://docs.openssl.org/master/man7/ossl-guide-quic-introduction/#what-is-quic
https://github.com/openssl/openssl/tree/master/ssl/quic
https://github.com/openssl/openssl/tree/master/demos/quic
https://github.com/openssl/openssl/tree/master/demos/http3
https://github.com/ngkore/pqproto/tree/main/quic

QUIC: Key Functional ELlements

e SSL Context
o SSL_CTX_new(_method_) — create SSL context
o OSSL_QUIC_server_method() / OSSL_QUIC_client_method() — server/client QUIC contexts
o Application Protocol Negotiation (ALPN)
o SSL_CTX_set_alpn_select_cb() - mandatory during TLS handshake
o Prototype used "http/1.0" instead of "h3" (HTTP/3)
e Use BIO sockets or create manual sockets
 Single Streams: SSL_new_listener(SSL_CTX, flags) + SSL_accept_connection(SSL, flags) for
bidirectional stream

e Multi Streams: SSL_new_stream() — see https://docs.openssl.org/master/man7/ossl-guide-quic-

multi-stream/

o Verify Handshake completion with SSL_is_init_finished() as PQ context increases handshake time

https://docs.openssl.org/master/man7/ossl-guide-quic-multi-stream/
https://docs.openssl.org/master/man7/ossl-guide-quic-multi-stream/

QUIC (PQ-support): Terminal Logs Rcrons

ubuntu@strongswan:~/pgproto/quic/pqg-support$./server --port 5433
=== Post-Quantum QUIC Echo Server ===

Post-quantum key exchange groups configured
ALPN protocols configured (demo: http/1.0, not actual HTTP/3)
QUIC SSL context created successfully

Server certificate loaded from ./certs/server-cert.penm

Server private key loaded from ./certs/server-key.pem
Certificate and private key match verified
e e

=== Post-Quantum QUIC Server Certificate & Key ===
Server certificate algorithm: ML-DSA-65

Server certificate key size: 15616 bits

Server private key algorithm: ML-DSA-65 (15616 bits)

QUIC server bound to UDP port 5433

QUIC server ready on port 5433. Press Ctrl+C to stop.
Waiting for QUIC connection...

QUIC connection established

Handshake completed successfully

e —————y

=== Post-Quantum QUIC Connection === ‘— ECho

QUIC version: QUICv1 £;

Cipher suite: TLS_AES_256_GCM_SHA384 n,
Key exchange: X25519MLKEM768 EE EE'.
Server signature: mldsa65s

Stream 0 received 9 bytes: Hi there!
Echoed 9 bytes back to stream 0
QUIC client disconnected

QUIC connection handling completed
Shutting down QUIC connection...
QUIC connection closed

Waiting for QUIC connection...

ArC

Received SIGINT, shutting down gracefully...
Failed to accept QUIC connection
QUIC connection closed

QUIC server shut down complete

ubuntu@strongswan:~/pqproto/quic/pq-supports ./client --host localhost --port 5433
=== Post-Quantum QUIC Client ===

Post-quantum key exchange groups configured for client
ALPN will be configured per-connection (demo: http/1.0)
QUIC SSL context created successfully

CA certificate loaded from ./certs/ca-cert.pem

Server certificate verification enabled

QUIC UDP socket created and connected

QUIC client configured for localhost:5433

Starting QUIC handshake...

QUIC handshake successful
e o o e

=== QUIC Connection ===

QUIC version: QUICv1

Cipher suite: TLS_AES_256_GCM_SHA384
Key exchange: X25519MLKEM768

Peer signature algorithm: mldsa65

4— Client

=== Server Certificate ===

Server subject: [C=US/ST=CA/L=San Francisco/0=QUIC PQ Test Server/CN=localhost
Server issuer: [C=US/ST=CA/L=San Francisco/0=QUIC PQ Test CA/CN=QUIC PQ Test CA
Server certificate algorithm: ML-DSA-65

Server certificate key size: 15616 bits

Using OpenSSL OpenSSL 3.5.3 16 Sep 2025 with QUIC support

QUIC connection established! Type messages to send to server (Ctrl+C to exit):
> Hi there!

Sent 10 bytes on QUIC stream

Received 9 bytes from QUIC stream

Server echoed: Hi there!

IPSec (Internet Protocol Security)

e Secures IP communication by encrypting data and authenticating sources; commonly used for VPNs
e Implemented a complete IPsec/IKEv2 VPN using StrongSwan v6.0.2 with OpenSSL 3.5.3 -

https://github.com/strongswan/strongswan

e Built a Docker-based server—client network to run IPsec VPN in tunnel mode with configurable
authentication: X.509 certificates or pre-shared keys

o https://github.com/ngRore/pgproto/tree/main/ipsec

e Post-Quantum Setup:
o Pre-shared keys: ML-KEM key exchange groups
o Certificate auth: RSA certificates + ML-KEM key exchange
e StrongSwan (v6.0.2) currently does not support PQ certificates (e.g., ML-DSA) -

https://github.com/strongswan/strongswan/tree/ml-dsa (development)

https://github.com/strongswan/strongswan
https://github.com/ngkore/pqproto/tree/main/ipsec
https://github.com/strongswan/strongswan/tree/ml-dsa
https://github.com/strongswan/strongswan/tree/ml-dsa

Strongswan based IPSec: Supported Algorithms 4.

Selecting ML_KEM_768 for Rey exchange, Tunnel Mode

ubuntu@openssl:~$ docker exec ipsec-client swanctl --list-sas
connect-to-corporate: #27, ESTABLISHED, IKEv2, 44d298688713cbdc_i* f26a1083039f63ce_r
local 'C=US, ST=Test, L=Test, 0=Test Client, OU=Test, CN=client.test.local' @ 172.21.0.20[4500]
~Lenote _C=US, Sl=Test. L=Test _0=Test Server, OU=Test. CN=ven.fesf.local @ 172.21.0.10[4500]
1 AES_GCM_16-256/PRF_HMAC_SHA2_384/ML_KEM_768
: established 493s ago, rekeying in 2791s, reauth in 9975s

in c5aelleb, 263 bytes, 4 packets, 3s ago
out c7712d09, 344 bytes, 6 packets, 185s ago
local 172.21.0.20/32

remote 10.1.0.1/32

ubuntu@openssl:~$ docker exec -it ipsec-client python3 /usr/local/bin/test-client.py

A testing Python

. [CLIENT] Connecting to 10.1.0.1:8080
SCTlPt to set UP an [CLIENT] Connection will be encrypted via IPsec tunnel
. . . [CLIENT] Connected successfully!
Interactive session [CLIENT] Type messages to send (or 'quit' to exit)

between client and

* [CLIENT] Enter message: Hi there, OpenSSL Team!!
server via IPSQC [CLIENT] [14:26:46] SENDING: 'Hi there, OpenSSL Team!!'

tunnel [CLIENT] [14:26:46] RECEIVED: 'SERVER_ECHO[14:26:46]: Hi there, OpenSSL Team!!'

[CLIENT] Enter message:|

ML-KEM under Key Exchange Groups

ke {
MODP_3072
MODP_4096
MODP_6144
MODP_8192 = openssl
MODP_2048 = openssl
MODP_2048_224 = openssl
MODP_2048_256 = openssl
MODP_1536 = openssl
MODP_1024 = openssl
MODP_1024_160 = openssl
MODP_768 = openssl

~JODE_CUSTOM = openssl._,
ML_KEM_512 = openssl
ML_KEM_768 = openssl
ML_KEM_1024 = openssl
ECP_256 = openssl
ECP_384 = openssl
ECP_521 = openssl
ECP_224 = openssl
ECP_192 = openssl
ECP_256_BP = openssl
ECP_384 BP = openssl
ECP_512_BP = openssl
ECP_224 BP = openssl
CURVE_25519 = openssl
CURVE_448 = openssl

openssl
openssl
openssl

OAuth2.0 (ongoing)

e An authorization framework that lets users grant third-party apps limited access to protected
resources without sharing passwords
e Using Ory Hydra - an open-source OAuth 2.0 & OpenlD Connect (OIDC) authorization server in Go
o https://github.com/ory/hydra

e Built-in JWT access token support
e Post-Quantum Integration:
o Custom JWT signing through Go crypto interfaces using:
» Cloudflare go or Circl (or standard Go crypto with PQ support) -
https://github.com/cloudflare/circl
» libogs-go for ML-DSA signatures - https://github.com/open-quantum-safe/libogs-go

https://github.com/ory/hydra
https://github.com/cloudflare/circl
https://github.com/open-quantum-safe/liboqs-go

NGKORE

SSH (ongoing)

e A secure network protocol for encrypted remote communication and data transfer between a
client and a server

e Fork of OpenSSH that includes prototype quantum-resistant key exchange and authentication in
SSH based on libogs - https://github.com/open-quantum-safe/openssh

e Build a server-client prototype setup using Go crypto/ssh/
e Integrating Cloudflare CIRCL library for post-quantum key exchange and signatures -
https://github.com/cloudflare/circl

https://github.com/open-quantum-safe/openssh
https://github.com/cloudflare/circl

Challenges for PQC Migration

@

NGKORE

Challenges for PQC Migration (l)

e Key & Signature Size Explosion
o ML-DSA-65 signatures: 3,309 bytes vs 64 bytes (Ed25519) — certificate bloat and larger handshakes

o ML-KEM-768 keys: 1,184 bytes vs 32 bytes (X25519) — ~37x increase

ClientHello size, when including ECDHE

Memory Footprint of Key and Signature/Ciphertext
Reyshares and PSK, will exceed MSS

2420

2500) :
— Public Key Size
[| X25519 keyshare (32B)

| Signature/Ciphertext Size
>1416B,
MSS is 124407 | Kyber768 keyshare (1184B)

Pre-shared key (200-300B)

2000
- 1500
g 1312 — . .
= Other ClientHello fields
5
Source: https://engineering.fb.com/2024/05/22/security/post-

1000 =
800 | 768
086 quantum-readiness-tls-pqr-meta/
500
256 256
O -) g . .
SRRt Kyber-512 Dilithium-1l FeloonSiis Source: https://arxiv.org/abs/2508.00832

RSA-2048

https://engineering.fb.com/2024/05/22/security/post-quantum-readiness-tls-pqr-meta/
https://engineering.fb.com/2024/05/22/security/post-quantum-readiness-tls-pqr-meta/
https://arxiv.org/abs/2508.00832

Challenges for PQC Migration ()

e Lack of full PQC migration (native support), requiring fallback mechanisms and hybrid
deployments - adds configuration and maintenance complexity

» Side-channel exposures: timing attacks (e.q., KyberSlash, Clangover), fault-injection risks

e Immature open-source PQC libraries are not yet hardened for production
e static buffer allocations (e.g., 256-byte RSA) may overflow with larger PQ keys

e Network impact: TCP congestion window limits, DTLS fragmentation from oversized packets

WE DO NOT CURRENTLY RECOMMEND RELYING ON THIS LIBRARY IN A PRODUCTION ENVIRONMENT OR
TO PROTECT ANY SENSITIVE DATA. This library is meant to help with research and prototyping. While we
make a best-effort approach to avoid security bugs, this library has not received the level of auditing and

analysis that would be necessary to rely on it for high security use.

Please see for details on how to report a vulnerability and the OQS vulnerability response
process.

Source: https://github.com/open-quantum-safe/libogs

Security Disclaimer

X This library is offered as-is, and without a guarantee. Themfore, it is expected that changes in the code,

repository, and API occur in the future. We recommend to take £_ ation before using this library in a
production application since part of its content is experimental. All security issues must be reported, please

Source: https://github.com/cloudﬂare/circl notify us immediately following the instructions given in our

https://kyberslash.cr.yp.to/
https://github.com/open-quantum-safe/liboqs/security/advisories/GHSA-f2v9-5498-2vpp
https://github.com/cloudflare/circl
https://github.com/open-quantum-safe/liboqs

]

Migration Strategy & Best Practices

Migration Strategy & Best Practices

« Identify high-risk systems vulnerable to HNDL attacks and plan their migration first

» Deploy hybrid key exchanges combining classical and PQC algorithms to maintain backward
compatibility during transition

e Upgrade CA software to issue PQC or hybrid certificates and handle larger key sizes

« Start with pilot testing (sooner) and gradually extend PQC support to production environments

« Validate interoperability and performance across multiple implementations such as OpenSSL,
BoringSSL, wolfSSL, strongSwan, Circl, etc

e Perform constant-time code audits, fault injection, and fuzzing to detect timing or side-channel
vulnerabilities unique to PQC

« Measure handshake latency, throughput, and resource overhead before and after PQC integration;
adjust buffer sizes, caching, and session resumption for efficiency

« Use hardware and algorithm optimizations—AES-NI, SIMD, ADX, and NTT—to improve

cryptographic performance

09
a8

Real World Implementations

Our Implementations

e PQ-DTLS1.3 (branch feature/dtl(s-1.3) over F1AP interface EURECOM OpenAirinterface (OAl) RAN
« PQ-mTLS1.3 over Service Based Interface (SBI) in Aether/SD-Core

 PQ-IPSec (PSK-based Authentication) over N3 interface between OAlI RAN and OAIl UPF
 PQ-OAuth2.0 Authorization between NRF and NFs in Free5GC

e Implemented PQC in 5G SUPI Concealment for Forward Secrecy in Open5GS

* PQ-"protocol” refers “protocol” with PQ-support

L@ Discovery

NF Service NF Profile(s)
Consumer

Service Request
Subsequent Request
A1anodsiIqg

(s)21404d AN

Service Request

10

Response

NF Service
SCP Producer

Field Value

CA Type

Private (Internal) CA

Certificate Signature Algorithm

Homogeneous: ML-DSA-44/65/87

Hybrid: ML-DSA_Ed448, ML-DSA_Ed25519 + Any
TLS v1.3/1.2 ClassicalSignature Schemes

Signature Length

3293 octets + Classical Signature length (e.g. 64
octets for Ed25519)

Key Exchange Mechanism

Homogeneous: ML-KEM (512/768/1024)

Hybrid: ECDHE_ML-KEM (e.g. X25519MLKEMT768)

Key Exchange Length (Public key)

1216 octets (ML-KEM_768: 1184 octets,
X25519/P256: 32 octets)

Key Exchange CipherText Length

1088 octets

AEAD - Symmetric Encryption & Authentication
Algorithm

AES256_GCM, ChaCha20_Poly1305

enckeylen 32 octets (256 bits)

ivlen 12 octets (96 bits) (AEAD specific)

mackeylen 32/48 octets (256/384 bits)

maclen 32/48 octets (256/384 bits)

TLS KDF HMAC-based Expand & Extract KDF (HKDF) / PRF

for TLS v1.2

TLS Finished MAC algorithm

HMAC-SHA-256/384

Fallback Methods

TLS v1.2, Classical signature algorithms & Classical
key exchanges supported

NGKORE

New PQ TLS connection established
Connection Details
Connected to nrs
Supported Signature Sch ; PSSWith A256 ECDSAWithP256AndSHAZ2 Ed25519)SSWithSHA3S8U

. ~ | q 1 - 5 i A0 S~ T il A y "T1-1 " A : C1 A A
PKC L'-l."lt'l“aH-«.. o gl T LLNSIMNASE MLS 1t r"“'.Hh.J]..I . il - ndSHA384d E‘ I.l'lﬂln'.;..' r'l:-\]..‘: .u"d"ﬁ“h_‘,l],;‘

§.a LlLient

Hybrid Curve Pref.

HERHBEAERAHEREEE |GNB DETECTED | #8880 saaEE0ERY
N _ s — 3.
SCTP Accept from | 168.136.80:54341 |
Create a new NG connection for: | 192.168.136.80:54341 |
Handle NG Setup request
Supported Tai List in HEXA-AMF Plmn: &{061 € , Tac: Ox000001 Tac
Supported Tai List in HEXA-AMF Plmn: &{©001 ©1}, Tac: 6x000002 Tac
Client (NF) Supported Signature Schemes, Curves Preferences e v g i T s Mo e

Handle SCTP Notification|[addr: 192.168.136.80:54341)]
SCTP_SHUTDOWN_EVENT notification, cl

Lose the connection
Remove RAN Context[ID: <PlmnID {Mcc:801 Mnc:81}. GNbID

1 i i r . I
HandlLe 1 ’)] 1 at in

UE (Mobile) connected with 5G Core and a default
PDU session is established b/w UE and Core Network

HEHBEBBEHUBEHEE8 | PDU CREATED | 88880880808 0804 “-”t.‘r -
CIreatf’e
A e — A —— create
Send PDU Session Resource Setup Reque: usilist create
+ UDR
NSSH
PCF
https://nrf:29518/ ' fvl, instances/5d9d27d¥-22c9-Ud37-bdid2-15d384Ucb266
https://nrf:29518/nnrf-nfe/vl/nf-instances/0953d8d7-d384-U59b-adee—¥922f8b22cB87
https://nr+:29516/ F - fvl/nf=-instances/+387ceS53-6344-4574-9572-d0d+3493d874
84 .49 PUT { /Ivl/nf=instances/0953ded7-d384-U459b-adee-¥922¥68b22cB7
By .33 PUT / { /vl/nf-instances/5d9d27d4+-22c9-Ud37-bdi2-15d3084Ucb2686
8l . 1% PUT | ¢ vl/n¥=instances/+387ce53-6344-4574 2-d8d+3493d874

Real World Applications

Abstract

Enterprise cloud ecosystems face unprecedented security challenges as guantum
computing threatens traditional cryptographic foundations underpinning
federated APl communications. This work presents a novel guantum-resilient
middleware layer (QRIL) that integrates NIST-standardized post-guantum
cryptographic algorithms, specifically CRYSTALS-Kyber for key encapsulation and
Falcon for digital signatures, into enterprise APl security frameworks. The
middleware architecture employs hybrid encryption mechanisms, maintaining
backward compatibility through combined ECC and post-guantum protocols,
while enabling seamless federated identity propagation across multi-domain
cloud platforms. Core components include quantum-safe proxy gateways, security
kernel modules for policy-based access controls, and interoperability bridges
supporting legacy system integration. [[ulslf=yyt=lgie= ol B == =t =r= R T s (T wa T
standard libraries, including BouncyCastle, OpenQuantumSafe, and libogs,

ntegrated with enterprise Key Management Services across AWS, Azure, and

(213 Wl T s Wl EL el = Quantum attack simulations using IBM Qiskit and Microsoft

Quantum Development Kit wvalidate resistance against Grover's and Shor's
algorithms. Performance evaluations demonstrate acceptable latency overhead
while maintaining high throughput for quantum-safe handshake processes. The
framework successfully addresses backward compatibility requirements while
providing comprehensive protection against gquantum cryptanalysis threats in
enterprise federated APl environments, establishing a foundation for gquantum-

safe digital transformation in critical infrastructure sectors.

Source: https://lorojournals.com/index.php/emsj/article/view/1506

android / platform / external / liboqs

Bug: 337064740

Clone this repo:

git clone https://android.googlesource.com/platform/external/libogs

Source: https://android.googlesource.com/platform/external/libogs/

How Meta is enabling PQC

Meta's TLS protocol library, Fizz, is designed for high security, reliability, and performance.

The early work on Fizz previously helped standardize TLS 1.3 (RFC 8446). Fizz now
supports a range of features including various handshake modes, PSK resumption, Diffie-
Hellman key exchange authenticated with a pre-shared key for forward secrecy, async
I/0, zero copy encryption, client authentication, and HelloRetryRequest. The use of our
own implementation has allowed us to quickly react to new features in the TLS protocol.

Fizz is mostly built on top of three libraries: Folly, OpenSSL, and Sodium. Toe support PQC,
we make use of liboqgs, which is an open source library led by world-renowned PQC
experts that has received attention from both academia and industry experts. The libogs
library implements post-quantum cryptography algorithms for key encapsulation and
signature mechanisms, including Kyber. Additionally, we extended Fizz with hybrid Key
exchange functionality, which can make use of the new post-gquantum key exchange
mechanisms provided by libogs alongside existing classical mechanisms.

NGKORE

External users of OQS

libogs has been used in the following external projects:

Melta:

» Post-quantum readiness for TLS at Meta

= Meta is getting ready for post-quantum cryptography (podcast, libogs mentioned at the 25-
minute mark)

Utimaco Hardware Security Module demo with evolutionQ

Microsoft Post-Quantum Cryptography VPN: Experimental fork of OpenVPN adding post-quantum

cryptography, to evaluate functionality and performance of quantum resistant cryptographyin a

VPN setting.

Mullvad VPN: Public beta of Mullvad's VPN client using post-quantum key exchange.

Thales eSecurity Go wrapper

Liesware Coherence Cryptographic Server

Senetas/Thales High Speed Encryption: implementation of hybrid RSA/EC and QRA/QKD

Cisco: Post-Quantum TLS 1.3 and SSH Performance (preliminary results)

strongSwan: Post-Quantum IKEv2 demo

IBM Cloud

mbedTLS Source: https://openquantumsafe.org/applications/external.html

Source: https://engineering.fb.com/2024/05/22/security/post-quantum-readiness-tls-pqr-meta/

Introducing Post-Quantum Cryptography for IPsec in IPFire

by Michael Tremer, March 26

Preview

RHEL 10 packages libogs , ogsprovider , nss , openssh ,and gnutls provide PQC as a Technology

The RHEL 10.0 packages libogs , oqgsprovider , nss , openssh , and gnutls provide post-quantum

cryptography (PQC) as a Technology Preview. To enable the PQC algorithms, install the crypto-

With the upcoming release of IPFire 229 Core Update 193, we are excited to announce the integration of post-
quantum cryptography (PQC) for IPsec, thanks to the recent release of strongSwan 6.0.0. This marks a significant
step forward in securing communications against future threats posed by quantum computing.

policies-pg-preview package and apply the TEST-PQ cryptographic subpolicy.

Source:

Source: httpS//WWW ipfire_org/b[_og/introducing:post-quantum-Cryptogmmy_-for-ipsec-in -ipﬁre https.'//docs.redhat.Com/en/documentation/red hat enterprise linux/10/html/10.0 release nOteS/teChnOlOgy,

-preview-features

https://lorojournals.com/index.php/emsj/article/view/1506
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/10/html/10.0_release_notes/technology-preview-features
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/10/html/10.0_release_notes/technology-preview-features
https://openquantumsafe.org/applications/external.html
https://www.ipfire.org/blog/introducing-post-quantum-cryptography-for-ipsec-in-ipfire
https://lorojournals.com/index.php/emsj/article/view/1506
https://android.googlesource.com/platform/external/liboqs/
https://engineering.fb.com/2024/05/22/security/post-quantum-readiness-tls-pqr-meta/

Thank You

Q&A
?

OpenSSL Conference Prague 2025

