
Adoption Trends & Cryptographic Algorithms in
Internet Communication Protocols??

(TLS variants, QUIC, IPSec, OAuth, SSH)

Adoption Stats and Algorithm: TLS (and its variants)

ECDHE key exchange with P-256/P-384 curves, ECDSA/RSA authentication

Cipher suites: TLS_AES_256_GCM_SHA384 with ECDHE-P256 key agreement

96% of Chrome browsing time occurs over HTTPS connections

Source: https://sslinsights.com/ssl-certificates-statistics/

87.6% of the Websites Use a Valid SSL Certificate

https://sslinsights.com/ssl-certificates-statistics/

Adoption Stats and Algorithm: QUIC

Source: https://w3techs.com/technologies/overview/site_element

Mandatory TLS 1.3 integration for all QUIC

implementations

Inherits TLS 1.3's ECDHE key exchange and

ECDSA/RSA signatures

About 35.8 % of websites advertise HTTP/3 support
(via Alt-Svc headers or DNS)

About 8.8 % of websites include QUIC in their tech stack

https://w3techs.com/technologies/overview/site_element

Adoption Stats and Algorithm: IPSec

A significant portion of Internet users (~ 23-25 %) worldwide employ VPN services for privacy or

security as of 2024

IKEv2 with ECDHE group 19 (P-256) key exchange - most common

Primarily AES-GCM with HMAC-SHA-256 authentication

Source: https://www.verifiedmarketreports.com/product/ip-security-ipsec-market/

Top IP Security (IPSec) Market Companies

Expected growth of upto 25.7B by 2033, about 8.8% CAGR from 2024

https://www.verifiedmarketreports.com/product/ip-security-ipsec-market/

Adoption Stats and Algorithm: SSH

Key exchange algorithms: curve25519-sha256 (most common), ecdh-sha2-nistp256

Host key types: ssh-ed25519, ecdsa-sha2-nistp256, rsa-sha2-512

Entire session security depends on ECDH key exchange

Source: https://www.rapid7.com/blog/post/2020/08/28/nicer-protocol-deep-dive-secure-shell-ssh/

https://www.rapid7.com/blog/post/2020/08/28/nicer-protocol-deep-dive-secure-shell-ssh/

Adoption Stats and Algorithm: OAuth

RSA/ECDSA signatures for JWT validation, relies on TLS for transport security

Token integrity depends entirely on classical signature algorithms

Source: https://assets.ctfassets.net/2ntc334xpx65/77U9sLFO7rD7t9zdI6Q1SV/a8e2054b5affc0280769516eee70b0ea/Social-Login-Report.pdf

Most used social login methods
among companies using Auth0

https://assets.ctfassets.net/2ntc334xpx65/77U9sLFO7rD7t9zdI6Q1SV/a8e2054b5affc0280769516eee70b0ea/Social-Login-Report.pdf

Why These Numbers Matter

Dependence on Classical Cryptography!!

Source: https://arxiv.org/pdf/2509.24623

https://arxiv.org/pdf/2509.24623

Progress Towards Quantum-Resilient Security:
Advancement in PQC

Foundation for PQC

Source: https://www.nist.gov/news-events/news/2024/08/nist-releases-first-3-finalized-post-quantum-encryption-standards

Major security bodies—CISA, NSA, NCSC UK,
DoD, and ENISA—immediately endorsed these
standards and published migration guidance

Federal agencies mandated inventory and
migration plans via OMB M-23-02 and NSM-
10, with 2035 as the target deadline

EU and UK national cybersecurity centers set
PQC migration timelines through 2035,
requiring phased deployments and annual
progress reporting

Cloud providers (AWS, Azure, Google Cloud)
published PQC policy pages enforcing hybrid
key exchanges and PQC-compatible
certificates for all new workloads

https://www.nist.gov/news-events/news/2024/08/nist-releases-first-3-finalized-post-quantum-encryption-standards

PQ versions of major protocols —TLS, SSH, IPsec, OAuth, and DTLS— are not fully standardized

Waiting is risky. Delaying migration invites “harvest-now, decrypt-later” attacks, where adversaries

capture encrypted data today for decryption once quantum computers become practical

Where’s the Problem?

Solution?

Protocol Migration in Practice: From Classical to
Post-Quantum Cryptography with OpenSSL

OpenSSL Conference Prague 2025

October 9, 2025

Who Are We?

Governing Board Committer Representative @LF Networking (LFN)

TSC Member @5G 5G SBP & @L3AF Project

Chief Architect @NgKore Community (Co-founder)

Shankar Malik

Mentor @LF Decentralized Trust (LFDT)

NgKore’s Representative @PKI Consortium

SW Engineer @NgKore Community (Co-founder)

Shubham Kumar

Agenda

Adoption Trends & Cryptographic Algorithms in Internet Protocols

Risks in Security Protocols – Dependence on Classical Cryptography

Progress Towards Quantum-Resilient Security (Foundation for PQC)

Identifying the Problem: The Gap

Session Overview & About Us

Project Overview – pqproto

TLS

mTLS

DTLS

QUIC

IPSec

SSH & OAuth (WIP)

Challenges in PQC Migration

Migration Strategy & Best Practices

Our Implementations & Real-World Applications

Project Overview – pqproto

A simplified prototype showcasing classical and post-quantum secure client–server communication.

Purpose: Demonstrates how to migrate classical cryptographic protocols to post-quantum (PQ)

alternatives.

Protocols Covered: TLS, mTLS, DTLS, QUIC, IPsec, OAuth, and SSH (more in the future)

Implementation Style: Command-line (CLI)–based client–server setup for easy testing and

automation

Core Libraries & Tools:

OpenSSL with PQC support (v3.5.0 & above)

liboqs and oqs-provider for hybrid/PQ key exchange and signatures

strongSwan for IPsec integration

Circl and other PQC libraries for algorithm diversity

Repository: https://github.com/ngkore/pqproto

https://github.com/ngkore/pqproto

TLS (Transport Layer Security)

A cryptographic protocol that encrypts data to secure communications over the internet

Core Guarantees: Confidentiality, Integrity, Authentication

Operates over TCP at the transport layer

Negotiates the highest supported version (typically TLS 1.3 or TLS 1.2)

OpenSSL 3.5 TLS Guide: https://docs.openssl.org/3.5/man7/ossl-guide-tls-introduction/

Simple Echo Client/Server Demo: https://github.com/openssl/openssl/tree/master/demos/sslecho

pqproto Classical and PQ-Support TLS1.3 Client/Server Setup -

https://github.com/ngkore/pqproto/tree/main/tls

Source: https://openssl-corporation.org/post/2025-04-08-openssl-35-final-release/

https://docs.openssl.org/3.5/man7/ossl-guide-tls-introduction/
https://github.com/openssl/openssl/tree/master/demos/sslecho
https://github.com/ngkore/pqproto/tree/main/tls
https://openssl-corporation.org/post/2025-04-08-openssl-35-final-release/

TLS: Algorithms and Cipher Suites

Cipher Suites

Signature Algorithms

KEM Algorithms

Note: More Algorithm and cipher suites can be used with liboqs/OQS Provider additions

TLS Connection Phases

1. Setup Phase

Create and configure SSL_CTX

Configure cryptographic parameters:

SSL_CTX_set1_sigalgs_list() - signature

algorithms

SSL_CTX_set1_groups_list() - supported

groups

Load certificates and private keys

Create SSL object and associate with socket/BIO

2. Handshake Phase

ClientHello/ServerHello exchange (cipher

negotiation)

Certificate verification and key exchange

Complete with Finished messages

3. Application Data Transfer

Secure bidirectional communication using

established session keys

Read/write application data through SSL

object

Protocol-level messages may still be

exchanged alongside application data

4. Shutdown Phase

Send close_notify alert to initiate graceful

shutdown

Receive close_notify response from peer

Clean up SSL objects and close underlying

sockets

TLS (PQ-Support): Terminal Logs

Echo Server Client

mTLS (Mutual Transport Layer Security)

mTLS connection setup is identical to the standard TLS client/server configuration

The only difference is the client certificate verification on the server side -

 SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, verify_client_callback)

pqproto Classical and PQ-Support mTLS1.3 Client/Server Setup -

https://github.com/ngkore/pqproto/tree/main/mtls

https://github.com/chmodshubham/pqproto/tree/main/mtls

mTLS (PQ-support): Terminal Logs

 Client

Echo
Server

DTLS connection setup is slightly different from a standard TLS client/server configuration

TLS runs over TCP, where reliability is critical, while DTLS runs over UDP, prioritizing speed and low

latency

Add cookie secrets in the SSL context for client verification to help mitigate DoS attacks.

OpenSSL 3.5.3 does not yet support DTLS 1.3 (still in development):

Branch (dtls-1.3) - https://github.com/openssl/openssl/tree/feature/dtls-1.3

Available for testing with PQ-support using oqs-provider and liboqs

Testing performed with DTLS 1.2 client/server setup

No post-quantum support in DTLS 1.2—implementation currently runs in classical mode only

Prototype reference: https://github.com/ngkore/pqproto/tree/main/dtls

DTLS (Datagram Transport Layer Security)

https://github.com/openssl/openssl/tree/feature/dtls-1.3
https://github.com/ngkore/pqproto/tree/main/dtls

QUIC (Quick UDP Internet Connections)

Traditional web stack uses TCP + TLS + HTTP: TCP ensures reliability, TLS provides encryption, and

HTTP/2 offers efficiency

QUIC combines all three layers into one protocol, streamlining connection setup and reducing latency.

QUIC builds on top of UDP, not replacing TCP/UDP, but avoiding protocol ossification while maintaining

flexibility

OpenSSL QUIC introduction: https://docs.openssl.org/master/man7/ossl-guide-quic-

introduction/#what-is-quic

OpenSSL QUIC source: https://github.com/openssl/openssl/tree/master/ssl/quic

Demo setups:

HTTP/1-based QUIC client/server - https://github.com/openssl/openssl/tree/master/demos/quic

HTTP/3 client/server - https://github.com/openssl/openssl/tree/master/demos/http3

Single-stream QUIC client/echo server implemented in classical and post-quantum (PQ) support

modes - https://github.com/ngkore/pqproto/tree/main/quic

https://docs.openssl.org/master/man7/ossl-guide-quic-introduction/#what-is-quic
https://docs.openssl.org/master/man7/ossl-guide-quic-introduction/#what-is-quic
https://github.com/openssl/openssl/tree/master/ssl/quic
https://github.com/openssl/openssl/tree/master/demos/quic
https://github.com/openssl/openssl/tree/master/demos/http3
https://github.com/ngkore/pqproto/tree/main/quic

QUIC: Key Functional Elements

SSL Context

SSL_CTX_new(_method_) – create SSL context

OSSL_QUIC_server_method() / OSSL_QUIC_client_method() – server/client QUIC contexts

Application Protocol Negotiation (ALPN)

SSL_CTX_set_alpn_select_cb() – mandatory during TLS handshake

Prototype used "http/1.0" instead of "h3" (HTTP/3)

Use BIO sockets or create manual sockets

Single Streams: SSL_new_listener(SSL_CTX, flags) + SSL_accept_connection(SSL, flags) for

bidirectional stream

Multi Streams: SSL_new_stream() – see https://docs.openssl.org/master/man7/ossl-guide-quic-

multi-stream/

Verify Handshake completion with SSL_is_init_finished() as PQ context increases handshake time

https://docs.openssl.org/master/man7/ossl-guide-quic-multi-stream/
https://docs.openssl.org/master/man7/ossl-guide-quic-multi-stream/

QUIC (PQ-support): Terminal Logs

Echo
Server

Client

IPSec (Internet Protocol Security)

Secures IP communication by encrypting data and authenticating sources; commonly used for VPNs

Implemented a complete IPsec/IKEv2 VPN using StrongSwan v6.0.2 with OpenSSL 3.5.3 -

https://github.com/strongswan/strongswan

Built a Docker-based server–client network to run IPsec VPN in tunnel mode with configurable

authentication: X.509 certificates or pre-shared keys

https://github.com/ngkore/pqproto/tree/main/ipsec

Post-Quantum Setup:

Pre-shared keys: ML-KEM key exchange groups

Certificate auth: RSA certificates + ML-KEM key exchange

StrongSwan (v6.0.2) currently does not support PQ certificates (e.g., ML-DSA) -

https://github.com/strongswan/strongswan/tree/ml-dsa (development)

https://github.com/strongswan/strongswan
https://github.com/ngkore/pqproto/tree/main/ipsec
https://github.com/strongswan/strongswan/tree/ml-dsa
https://github.com/strongswan/strongswan/tree/ml-dsa

Strongswan based IPSec: Supported Algorithms

ML-KEM under Key Exchange Groups
Selecting ML_KEM_768 for key exchange, Tunnel Mode

A testing Python

script to set up an

interactive session

between client and

server via IPSec

tunnel -

OAuth2.0 (ongoing)

An authorization framework that lets users grant third-party apps limited access to protected

resources without sharing passwords

Using Ory Hydra – an open-source OAuth 2.0 & OpenID Connect (OIDC) authorization server in Go

https://github.com/ory/hydra

Built-in JWT access token support

Post-Quantum Integration:

Custom JWT signing through Go crypto interfaces using:

Cloudflare go or Circl (or standard Go crypto with PQ support) -

https://github.com/cloudflare/circl

liboqs-go for ML-DSA signatures - https://github.com/open-quantum-safe/liboqs-go

https://github.com/ory/hydra
https://github.com/cloudflare/circl
https://github.com/open-quantum-safe/liboqs-go

SSH (ongoing)

A secure network protocol for encrypted remote communication and data transfer between a

client and a server

Fork of OpenSSH that includes prototype quantum-resistant key exchange and authentication in

SSH based on liboqs - https://github.com/open-quantum-safe/openssh

Build a server–client prototype setup using Go crypto/ssh/

Integrating Cloudflare CIRCL library for post-quantum key exchange and signatures -

https://github.com/cloudflare/circl

https://github.com/open-quantum-safe/openssh
https://github.com/cloudflare/circl

Challenges for PQC Migration

Key & Signature Size Explosion

ML-DSA-65 signatures: 3,309 bytes vs 64 bytes (Ed25519) → certificate bloat and larger handshakes

ML-KEM-768 keys: 1,184 bytes vs 32 bytes (X25519) → ~37× increase

Challenges for PQC Migration (I)

Source: https://engineering.fb.com/2024/05/22/security/post-

quantum-readiness-tls-pqr-meta/

ClientHello size, when including ECDHE
keyshares and PSK, will exceed MSS

Source: https://arxiv.org/abs/2508.00832

https://engineering.fb.com/2024/05/22/security/post-quantum-readiness-tls-pqr-meta/
https://engineering.fb.com/2024/05/22/security/post-quantum-readiness-tls-pqr-meta/
https://arxiv.org/abs/2508.00832

Challenges for PQC Migration (II)

Lack of full PQC migration (native support), requiring fallback mechanisms and hybrid

deployments - adds configuration and maintenance complexity

Side-channel exposures: timing attacks (e.g., KyberSlash, Clangover), fault-injection risks

Immature open-source PQC libraries are not yet hardened for production

static buffer allocations (e.g., 256-byte RSA) may overflow with larger PQ keys

Network impact: TCP congestion window limits, DTLS fragmentation from oversized packets

Source: https://github.com/cloudflare/circl

Source: https://github.com/open-quantum-safe/liboqs

https://kyberslash.cr.yp.to/
https://github.com/open-quantum-safe/liboqs/security/advisories/GHSA-f2v9-5498-2vpp
https://github.com/cloudflare/circl
https://github.com/open-quantum-safe/liboqs

Migration Strategy & Best Practices

Migration Strategy & Best Practices

Identify high-risk systems vulnerable to HNDL attacks and plan their migration first

Deploy hybrid key exchanges combining classical and PQC algorithms to maintain backward

compatibility during transition

Upgrade CA software to issue PQC or hybrid certificates and handle larger key sizes

Start with pilot testing (sooner) and gradually extend PQC support to production environments

Validate interoperability and performance across multiple implementations such as OpenSSL,

BoringSSL, wolfSSL, strongSwan, Circl, etc

Perform constant-time code audits, fault injection, and fuzzing to detect timing or side-channel

vulnerabilities unique to PQC

Measure handshake latency, throughput, and resource overhead before and after PQC integration;

adjust buffer sizes, caching, and session resumption for efficiency

Use hardware and algorithm optimizations—AES-NI, SIMD, ADX, and NTT—to improve

cryptographic performance

Real World Implementations

Our Implementations

PQ-DTLS1.3 (branch feature/dtls-1.3) over F1AP interface EURECOM OpenAirInterface (OAI) RAN

PQ-mTLS1.3 over Service Based Interface (SBI) in Aether/SD-Core

PQ-IPSec (PSK-based Authentication) over N3 interface between OAI RAN and OAI UPF

PQ-OAuth2.0 Authorization between NRF and NFs in Free5GC

Implemented PQC in 5G SUPI Concealment for Forward Secrecy in Open5GS

* PQ-”protocol” refers “protocol” with PQ-support

Field Value

 CA Type Private (Internal) CA

 Certificate Signature Algorithm

 Homogeneous: ML-DSA-44/65/87

 Hybrid: ML-DSA_Ed448, ML-DSA_Ed25519 + Any
 TLS v1.3/1.2 ClassicalSignature Schemes

 Signature Length
 3293 octets + Classical Signature length (e.g. 64
 octets for Ed25519)

 Key Exchange Mechanism
 Homogeneous: ML-KEM (512/768/1024)

 Hybrid: ECDHE_ML-KEM (e.g. X25519MLKEM768)

 Key Exchange Length (Public key)
 1216 octets (ML-KEM_768: 1184 octets,
 X25519/P256: 32 octets)

 Key Exchange CipherText Length 1088 octets

 AEAD - Symmetric Encryption & Authentication
 Algorithm

 AES256_GCM, ChaCha20_Poly1305

 enckeylen 32 octets (256 bits)

 ivlen 12 octets (96 bits) (AEAD specific)

 mackeylen 32/48 octets (256/384 bits)

 maclen 32/48 octets (256/384 bits)

 TLS KDF
 HMAC-based Expand & Extract KDF (HKDF) / PRF
 for TLS v1.2

 TLS Finished MAC algorithm HMAC-SHA-256/384

 Fallback Methods
 TLS v1.2, Classical signature algorithms & Classical
 key exchanges supported

 NF Service
Producer

NRF

PQ-mTLS

Use Case: PQ-mTLS in SBI in 5G Core Network

 NF Service
Consumer

SCP

Service Request

Response

Discovery

NF Profile(s)

D
isco

very

N
F Pro

file(s)Se
rv

ic
e

R
eq

u
es

t

Su
b
se

q
u

en
t

R
eq

u
es

t

PQ-mTLS

Example: PQ-mTLS in SBI in Aether/SD-Core

Client (NF) Supported Signature Schemes, Curves Preferences

RAN detection and connection establishment by 5G Core

NF (e.g., UDR, NSSF, PCF) registration with NRF and NF Profile creation

UE (Mobile) connected with 5G Core and a default
PDU session is established b/w UE and Core Network

ML-DSA Certs

Hybrid Curve Pref.

1.

2.

4.

3.

Real World Applications (External Users)

Source:

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/10/html/10.0_release_notes/technology

-preview-features

Source: https://openquantumsafe.org/applications/external.html

Source: https://www.ipfire.org/blog/introducing-post-quantum-cryptography-for-ipsec-in-ipfire

Source: https://lorojournals.com/index.php/emsj/article/view/1506

Source: https://android.googlesource.com/platform/external/liboqs/

Source: https://engineering.fb.com/2024/05/22/security/post-quantum-readiness-tls-pqr-meta/

https://lorojournals.com/index.php/emsj/article/view/1506
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/10/html/10.0_release_notes/technology-preview-features
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/10/html/10.0_release_notes/technology-preview-features
https://openquantumsafe.org/applications/external.html
https://www.ipfire.org/blog/introducing-post-quantum-cryptography-for-ipsec-in-ipfire
https://lorojournals.com/index.php/emsj/article/view/1506
https://android.googlesource.com/platform/external/liboqs/
https://engineering.fb.com/2024/05/22/security/post-quantum-readiness-tls-pqr-meta/

Thank You

OpenSSL Conference Prague 2025

Q&A

