
Ensuring Security of Post-Quantum Cryptography on Embedded
Devices: Formal Verification and Side-Channel Protection

Challenges

Reza Azarderakhsh

Professor FAU

CEO PQSecure

NIST Announcement for PQC (August 2023)

NIST Competition Status

NSA Recommendations for Cryptography
[From CNSA 2.0]

Combination
of Lattices,
Coding and
Isogenies

On-ramp call

FIPS-203: Module-Lattice-based Key-Encapsulation Mechanism Standard (CRYSTALS-Kyber)
FIPS-204: Module-Lattice-Based Digital Signature Standard (CRYSTALS-Dilithium)
FIPS 205: Stateless Hash-Based Digital Signature Standard (SPHINCS+)
NIST SP 800-208: Recommendation for Stateful Hash-Based Signature Schemes (XMSS/LMS)

PQC Agility

Type of Agility Definition

Implementation The Capability to swiftly configure interfaces and implement updates across various

systems or applications

Compliance The capacity to adapt cryptographic configurations in accordance with compliance

requirements.

Security Strength The capability to dynamically adjust the level of security strength based on configuration,

allowing for scalable security measures.

Migration The capability to transition and convert between cryptographic algorithms seamlessly.

Retirement Ability to retire obsolete or insecure cryptographic algorithms

Composability The capability to securely integrate multiple cryptographic primitives for composability.

Platform Ability to use assured cryptographic algorithms across different platform types

Context Ability to use a derived cryptographic algorithm policy with the flexibility from system

attributes

PQC to Final Products
SW

A
P

 S
en

si
ti

vi
ty

 /
 M

o
b

ili
ty

 R
eq

u
ir

em
en

ts

(I
o

T)

Lo
w

Short/Easy Long/Hard

First Movers
Banking Financial

Telecommunications
Aerospace Defense

Fast Followers
Transportation

H
ig

h

Fast Followers
Energy/Utility
Manufacturing

System-Device Useful Life / System Upgradeability

CHIPS Act: Agility and HW/SW for PQC

Pre-finalized PQC Standard Deployments

SW-First and then HW/SW Co-design

• Reference Codes
• ANSI C
• Device level optimized

ASM
• C-to-Rust
• Side-channel protection (?)
• Formal Verification

• Reference HDL
• FPGA Implementations
• ASIC Synthesis kGE
• Side-Channel Protection
• Verification and

Assurance

• CPU/FPGA co-design
• RISC-V/FPGA co-design
• ASIC with embedded co-design
• Side-channel protection
• Testing and Verification
• Assurance

HW vs. SW

Everyone Does Cryptography

Software Libraries: Provide flexible cryptographic functionality
for general use.

Dedicated Hardware Instructions: Enhance cryptographic
operations with specialized processor commands.

Trusted Platform Modules (TPMs): Secure hardware solutions
that store encryption keys and perform cryptographic tasks.

Hardware Security Modules (HSMs): Purpose-built hardware
devices designed to protect cryptographic keys and processes.

Secure Enclaves: Isolated, secure environments within
processors to handle sensitive data ensure secure execution.

Not Everyone Does Good Cryptography

• Incorrect Implementations:
• CVE-2022-0778 in OpenSSL allowed denial-of-service by exploiting a flaw in

certificate parsing.

• Weak Protocols:
• ROCA (2022) affected Infineon TPMs, making RSA keys vulnerable to

factorization attacks.

• Bad Random Number Generation:
• CVE-2023-23946 in GitHub Actions, where weak random numbers led to

easily guessable session tokens.

• Information Leakage Through Side-Channels:
• PLATYPUS attack (2020) on Intel CPUs exploited power consumption data to

extract cryptographic keys.

• I can do it
• Experienced in designing SoC with crypto accelerators.

• Only need IP blocks from PQSecure.

• Do it for me
• Limited resources or expertise, need full support.

• Require design, integration, and verification assistance.

• Give me a starting point
• Need a secure solution tailored to specific needs.

• Require customizable IP as a base to avoid reinventing the wheel.

Cryptographic Engineering

SCA Technologies

Many Stages for PQC Migration

Explore PQC
algorithms

Study
algorithms for

the users

Study
implementations

on real HW

Study Physical
security attacks

SCA, FI, etc.

Study reliable and
high assurance

Focus on
deployment for

target performance

Integrate securely
on read-world apps

Perform risk
assessment

Cost

 Security
Strength

 Attack
Protection

 Area
 Energy
 RAM/ROM

 Latency
 Power
 Throughput

Characteristics

FIPS 140-3 “non-invasive SCA”

Implementing PQC primitives is more complex than implementing ECC/RSA, and the community has many years fewer
experience with what could go wrong.

Private Key

Plaintext

Ciphertext

Timing

Information

Power

Consumption

Heat

Faults Accoustics

EM

Radiation

Side-Channel Mitigation

Techniques

Masking
Noise

Generators

Constant

Time

Parameter

Validation

Formal Verification

• Consider the field multiplication over 𝔽𝑝 with 𝑝 = 2^255 − 19.
• Number of inputs: 2^255 × 2^255

• How many of them can be tested?
• What about those inputs which are never tested?

• Formal verification aims to prove the absence of bugs through logical or
mathematical reasoning.

• Mathematical proof of correctness for all possible inputs.

• Complements testing by providing exhaustive confidence.

What is Formal Verification?

• Mathematical proof-based approach

• Ensures cryptographic implementations behave as
intended

• Proves correctness across all possible inputs

• Why is Formal Verification Critical for PQC?
• PQC is new and complex – traditional testing is insufficient

• Verification prevents future vulnerabilities

• Meets compliance standards (FIPS 140-3)

Compile & Final Verification

Check Side-Channel
Resistance

Prove Functional
Correctness

Express in Formal System

Define Algorithm

Verify Security Properties
(Symbolic Execution)

Challenges of Formal Verification in PQC
1. Algorithmic Complexity

• Lattice-based schemes like Kyber or Dilithium use complex structures (e.g., NTT, rejection sampling).

• Verifying math-heavy operations (polynomial arithmetic, mod reductions) is non-trivial.

2. Low-Level Optimizations

• PQC implementations are heavily optimized for performance (e.g., AVX2, Cortex-M).

• Hand-optimized assembly is hard to formally verify due to lack of structure and documentation.

3. Correctness vs. Security

• Formal tools often verify functional correctness, not cryptographic security.

• Need for tools that can bridge functional correctness (e.g., “does NTT work”) with security properties (e.g., IND-CCA2).

4. Tooling Gaps (Many formal tools are not yet adapted to post-quantum constructs)

• Most tools assume classical, simple arithmetic and logic.

• E.g., no native support for ring-based lattice arithmetic in most hardware formal tools.

5. Compositional Reasoning

• PQC schemes have multi-stage operations: keygen → encode → sample → transform.

• Verifying each step in isolation is hard without modular or compositional frameworks.

6. Side-Channel Resistance

• Formally verifying constant-time execution or masking countermeasures is still evolving.

• Side-channel models are complex and not fully integrated into most formal workflows.

Why Formal Verification Tools Needed for PQC?

• Ensuring correctness in PQC algorithms requires rigorous verification
beyond traditional testing

• PQC algorithms too complex for manual proofs → automation through
formal tools necessary

• Verifies correctness, memory safety, and protocol security before
deployment

• Key Areas of PQC Verification:
• Mathematical Proof Verification → Theorem Proving
• Protocol-level Security Checking → Model Checking
• Software Execution Analysis → Symbolic Execution
• Ensuring Compiler Security → PCC

What Tools Are Available for PQC?

Category Tools Used Key Focus

Theorem Proving Coq, Isabelle/HOL, EasyCrypt Proving mathematical correctness
of cryptographic algorithms

Model Checking Tamarin, ProVerif Verifying protocol security (e.g.,
PQC key exchange)

Symbolic Execution SAW, KLEE, Angr Checking functional correctness
and memory safety

Compiler & Low-level
Execution

Jasmin, CompCert, LLVM
Verified Backend

Ensuring compiled cryptographic
implementations remain secure

and correct

Formosa Crypto: Advancing High-Assurance
Cryptography

• Collaborative research initiative focused on
formally verifying cryptographic implementations

• Goal: Ensure formal verification, security, and
efficiency in PQC

• Provides users with tools to advance formal
verification

• Key Projects:
• EasyCrypt → Theorem-proving framework

• Jasmin → Formally verified programming language
and compiler

• Libjade → Cryptographic library, including PQC
implementations

EasyCrypt

• Formal verification framework

• Uses game-based security proofs to model adversaries

• Employs interactive theorem proving to verify correctness

• Ensures PQC algorithms (e.g., Kyber) are mathematically secure

• Security Proofs in EasyCrypt (Kyber Example):
• Goal: Show adversary cannot distinguish between two encapsulated secrets (IND-

CPA)

• Method: Define a security experiment where adversary tries to to guess which
shared secret was encapsulated

Formal Security Proof in EasyCrypt

• Define Kyber’s KEM operations in EasyCrypt

• The adversary chooses two shared messages: m0, m1

• A random one (b) is encapsulated and the ciphertext is given to the
adversary

• The attacker can query the decapsulation oracle (but not on the
challenge ciphertext)

• If the adversary guesses b correctly with probability >50%
• → Kyber is insecure!

• Security is proven via game reduction

• EasyCrypt provides an interactive theorem prover that checks every
step of the proof formally

Formal Verification: Programming Languages

• C has been standard language for writing crypto implementations

• Reminder: classical crypto standards should NOT apply to PQC

• So, should we still use C for PQC algorithms?

• C is not ideal for PQC:
• Lack of built-in memory safety

• Unpredictable optimizations by compilers

• NO built-in formal verification

“Security engineers have been fighting with C compilers for years”
--Simon, Chisnall, Anderson, 2018

“We argue that we must stop fighting the compiler, and instead make it our ally”

C/C++ versus Rust for Secure cryptography

Features C/C++ Rust

Memory Safety ❌ ✅

Clear, Defined Semantics ❌ ✅

Mandatory Initialization ❌ ✅

Built-in Runtime Checks ❌ ✅

Secret vs Public Data Separation ❌ ✅

Microarchitectural Attack Protection ❌ ✅

Secure Data Erasure (Zeroization) ❌ ✅

Strong Type Safety ❌ ✅

Concurrency Safety ❌ ✅

High Performance ✅ ✅

C-to-Rust Cryptography

c2rust.com

• Unsafe C converts to unsafe Rust

• Translation uses Raw pointer instead of Rust native type

• Non idiomatic Rust, relies on C type

=> Less safe, less readable, and more error-prone than idiomatic Rust code written from scratch.

Pure Rust implementation

Idiomatic Rust implementation:

• Bound checks, explicitly handle arithmetic overflow

• Rust native type safety: Memory safety, thread safety

• No NULL pointer, no UNDEFINED behavior

• Side-channel resistance

Final Notes

• PQC’s complexity requires rigorous security guarantees

• Formal Verification ≠ academic concept

• …it is essential to securing next-gen crypto implementations

• Tools like Jasmin and EasyCrypt are advancing verification in PQC

• Continued advancements must be made to ensure correctness,
security, and efficiency in PQC

• AI-driven automation and increased industry adoption promises a
bright future for PQC and formal verification!

Questions?

Reza Azarderakhsh

CEO PQSecure
razarder@pqsecurity.com

