e
PQSecur‘eQ

Prague 2025

NIST Announcement for PQC (August 2023)

Round 4

Key Exchange Digital Signature Key Exchange
. BIKE ‘
CRYSTAL-Kyber CRYSTAL-Dilithium .‘

Public-key
CRYSTALS-Dilithium
CRYSTALS-Kyber

On-ramp call

CNSA 2.0

Symmetric-key

Advanced Encryption Standard (AES)
Combination Secure Hash Algorithm (SHA)
of Lattices,
Coding and

Isogenies

Software and Firmware Updates
Xtended Merkle Signature Scheme (XMSS)
Leighton-Micali Signature (LMS)

FALCON
SPHINCS ™

NIST Competition Status

Classic McEliece

NSA Recommendations for Cryptography
[From CNSA 2.0]

FIPS-203: Module-Lattice-based Key-Encapsulation Mechanism Standard (CRYSTALS-Kyber)
FIPS-204: Module-Lattice-Based Digital Signature Standard (CRYSTALS-Dilithium)

FIPS 205: Stateless Hash-Based Digital Signature Standard (SPHINCS+)

NIST SP 800-208: Recommendation for Stateful Hash-Based Signature Schemes (XMSS/LMS)

PQC Agility

Implementation
Compliance
Security Strength

Migration
Retirement
Composability
Platform

Context

The Capability to swiftly configure interfaces and implement updates across various
systems or applications

The capacity to adapt cryptographic configurations in accordance with compliance
requirements.

The capability to dynamically adjust the level of security strength based on configuration,
allowing for scalable security measures.

The capability to transition and convert between cryptographic algorithms seamlessly.

Ability to retire obsolete or insecure cryptographic algorithms
The capability to securely integrate multiple cryptographic primitives for composability.
Ability to use assured cryptographic algorithms across different platform types

Ability to use a derived cryptographic algorithm policy with the flexibility from system
attributes

PQC to Final Products

c

Q

£ Fast Followers
.g © Energy/Utility
s T Manufacturing
o

=

7 —

2

Z2=

Py

=

G2

g 3

(V]

<

=

(0p)]

Short/Easy

First Movers

Banking Financial

Telecommunications

Aerospace Defense

Fast Followers

Transportation

Long/Hard

~SA
! -+
<@_]

Secure

Direct

[::::t> Foundries
Fabs

[> Fabless
PQSecure |:>

4
=

Qua -ntum- Component
il > Devices |:>
Algorithms Integrated Devices
and Services Manufacturers
(IDM)
Design
Automation
Tools |
(EDA)

System-Device Useful Life / System Upgradeability

4

Platforms
Systems
Products

CHIPS Act: Agility and HW/SW for PQC

AUGUST 08, 2022

FACT SHEET: CHIPS and Science Act
Will Lower Costs, Create Jobs,
Strengthen Supply Chains, and

Counter China

Key Strategy 1.1.5: Prioritize hardware integrity and security as an element in co-design strategies
across the stack.

In the face of threats from nation-state and criminal adversaries, the potential for the insertion of
malicious alterations into components ranging from circuits to software combined with the need to
prepare for a post-quantum-computing world make it essential that integrity and cybersecurity be a
foundational component of system design.***! Co-design of hardware with software is needed to meet
this challenge in a way that provides maximum protection while minimizing the impact on system
performance.* The design process must allow for iteration between hardware, software, and security

constraints. To meet economic and national security needs, security must be incorporated in co-design
R&D as a design constraint at the same level as performance.

30 Cybersecurity R&D challenges and goals for hardware and software are described in NITRD’s Federal Cybersecurity
Research and Development Strategic Plan , https://www.nitrd.gov/pubs/Federal-Cybersecurity-RD-Strategic-Plan-

3 See, for example, D. Dangwai et al., SoK: Opportunities for Software-Hardware-Security Codesign for Next Generation Secure

Computing, arxiv.org/abs/2105.00378.
— B —

Pre-finalized PQC Standard Deployments

AWS launched PQ-SSH for PQ
suport in AWS Transfer Service for

Google announces ATLS (interr.

use of PQC
2022 -11

Microsoft updates SymCrypt
with ML-KEM/XMSS
2024-09

OpenSSH include ML-KEM
2024-09

SFTP
2023 - 06
NIST SP1800-38C draft on
Migration to PQC Readiness
2023-12

NVIDIA announces cuQPC with
Kyber acceleration
2024 -03

HP announces stateful
hash-based
signatures support for firmware
2024-03

Zoom announces end-to-end PQC
encryption
2024 - 05
NIST CAVP approved ML-KEM, ML-
DSA, SLH-DSA algorithm
certificates
2024-08

Google ML-KEM in Chrome
2024-09

Reference Codes
ANSI C
Device level optimized

ASM

C-to-Rust

Side-channel protection (?)
Formal Verification

SW

HW/SW
HW

Reference HDL
FPGA Implementations
ASIC Synthesis kGE

Side-Channel Protection
Verification and
Assurance

CPU/FPGA co-design
RISC-V/FPGA co-design
ASIC with embedded co-design

Side-channel protection
Testing and Verification
Assurance

HW vs. SW

HARDWARE

Higher Speed

Lower Power/Energy

Sources of Randomness

Protection Against
Physical Attacks

SOFTWARE

Ease of Development

Open-Source Code
Comprehensive Libraries
Higher Agility

More Applications

Everyone Does Cryptography Secure

Software Libraries:

Dedicated Hardware Instructions:

Trusted Platform Modules (TPMs):

Hardware Security Modules (HSMs):

Secure Enclaves:

Not Everyone Does Good Cryptography

* Incorrect Implementations:

* CVE-2022-0778 in OpenSSL allowed denial-of-service by exploiting a flaw in
certificate parsing.

e Weak Protocols:

* ROCA (2022) affected Infineon TPMs, making RSA keys vulnerable to
factorization attacks.

e Bad Random Number Generation:

 CVE-2023-23946 in GitHub Actions, where weak random numbers led to
easily guessable session tokens.

* Information Leakage Through Side-Channels:

* PLATYPUS attack (2020) on Intel CPUs exploited power consumption data to
extract cryptographic keys.

Cryptographic Engineering Sacure -

* lcandoit
* Experienced in designing SoC with crypto accelerators.

* Only need IP blocks from PQSecure.

* Do it for me
* Limited resources or expertise, need full support.

Give me a
starting point

* Require design, integration, and verification assistance.

* Give me a starting point
* Need a secure solution tailored to specific needs.
* Require customizable IP as a base to avoid reinventing the wheel.

SCA Technologies

Fault Injection Attacks \ Power Analysis Attacks

Relies on introducing physical disturbances to cause errors in the system's execution, which can then be analyzed to recover secret information.| [Exploit the power consumption of a device to extract
information about the secret key or internal states
without prior profiling.

/ r\;\}l-l'-n!- .u-[l: ((.))E!lrﬂqu \

£ - ———
w,
- - — o~
L ®

H % ; ; : 2 i
- (gl Lo " Y
o g C s [e w-,nwfw pwmm"“
! 2 I e A ‘r | | Y A
1 [[

[=) a) N .E) E I) I | |
L] 1o o 1 10 1

Voltage Glitch Fault Injection Laser Fault Injection Electromagnetic Fault Injection Tisa

\/

o .
To37

=N {\\

Al-Assisted Profiling Attack

Side-Channel Setup \ \ Simple Power Analysis

@@ Data Acquisition Simulate the cryptographic operation under test. / \

—ciphertext—»

{§} Data Processing p pry = 1K~ DK~ P
1] _— - onE A SOV I 4

<«—plaintext—

/Traun machine learning models usmg\

traces with known keys - ‘ 5
>
7AaN w
L * ‘

\ Correlation Power Analysis (CPA) /

\ Training Model / (Leakage Detection - TVLA
NIST FIPS 140-3

Perform statistical analysis to detect side-channel leakage.

/ Utilize profiling data to characterize\
leakage.

@

Attack

o

Many Stages for PQC Migration

Perform risk |- Explore PQC
assessment algorithms

e Security l

Strength

o Attack Stu dy
Protection -
algorithms for

the users
Characteristics —

* Area e Latency
* Energy ® Power

e RAM/ROM e Throughput
Study

implementations
on real HW

¥

Study Physical
security attacks
SCA, Fl, etc.

=

_ Noise

Side-Channel Mitigation

Techniques

Constant Parameter
Time Validation

High power, Low energy

FIPS 140-3 “non-invasive SCA”
I Low power, High energy

Power

Time

Focus on

Integrate securely Study reliable and
deployment for | | :
on read-world apps high assurance
target performance

Implementing PQC primitives is more complex than implementing ECC/RSA, and the community has many years fewer

experience with what could go wrong.

Formal Verification

» Consider the field multiplication over Fp with p = 24255 — 19.
* Number of inputs: 27255 x 27255

 How many of them can be tested?
« What about those inputs which are never tested?

« Formal verification aims to prove the absence of bugs through logical or
mathematical reasoning.

» Mathematical proof of correctness for all possible inputs.
« Complements testing by providing exhaustive confidence.

What is Formal Verification?

Define Algorithm

* Mathematical proof-based approach

Express in Formal System

* Ensures cryptographic implementations behave as

Intended Prove Functional
* Proves correctness across all possible inputs correctness
* Why is Formal Verification Critical for PQC? Verify Security Properties

(Symbolic Execution)

* PQCis new and complex — traditional testing is insufficient
* Verification prevents future vulnerabilities
* Meets compliance standards (FIPS 140-3)

Check Side-Channel
Resistance

Compile & Final Verification

Challenges of Formal Verification in PQC

1. Algorithmic Complexity
* Lattice-based schemes like Kyber or Dilithium use complex structures (e.g., NTT, rejection sampling).
* Verifying math-heavy operations (polynomial arithmetic, mod reductions) is non-trivial.

2. Low-Level Optimizations
* PQC implementations are heavily optimized for performance (e.g., AVX2, Cortex-M).
* Hand-optimized assembly is hard to formally verify due to lack of structure and documentation.

3. Correctness vs. Security
* Formal tools often verify functional correctness, not cryptographic security.
* Need for tools that can bridge functional correctness (e.g., “does NTT work”) with security properties (e.g., IND-CCA?2).

4. Tooling Gaps (Many formal tools are not yet adapted to post-quantum constructs)
* Most tools assume classical, simple arithmetic and logic.
* E.g., no native support for ring-based lattice arithmetic in most hardware formal tools.

5. Compositional Reasoning
* PQC schemes have multi-stage operations: keygen - encode - sample = transform.
» Verifying each step in isolation is hard without modular or compositional frameworks.

6. Side-Channel Resistance
* Formally verifying constant-time execution or masking countermeasures is still evolving.
* Side-channel models are complex and not fully integrated into most formal workflows.

Why Formal Verification Tools Needed for PQC?

* Ensuring correctness in PQC algorithms requires rigorous verification
beyond traditional testing

* PQC algorithms too complex for manual proofs - automation through
formal tools necessary

* Verifies correctness, memory safety, and protocol security before
deployment

» Key Areas of PQC Verification:
* Mathematical Proof Verification - Theorem Proving
* Protocol-level Security Checking > Model Checking
e Software Execution Analysis - Symbolic Execution
* Ensuring Compiler Security - PCC

What Tools Are Available for PQC?

Category

Theorem Proving
Model Checking
Symbolic Execution

Compiler & Low-level
Execution

Tools Used

Coq, Isabelle/HOL, EasyCrypt
Tamarin, ProVerif
SAW, KLEE, Angr

Jasmin, CompCert, LLVM
Verified Backend

Secure

Key Focus

Proving mathematical correctness
of cryptographic algorithms

Verifying protocol security (e.g.,
PQC key exchange)

Checking functional correctness
and memory safety

Ensuring compiled cryptographic
implementations remain secure
and correct

Formosa Crypto: Advancing High-Assurance
Cryptography

e Collaborative research initiative focused on
formally verifying cryptographic implementations

e Goal: Ensure formal verification, security, and
efficiency in PQC

* Provides users with tools to advance formal
verification

* Key Projects:
e EasyCrypt - Theorem-proving framework

* Jasmin - Formally verified programming language
and compiler

* Libjade - Cryptographic library, including PQC
implementations

EasyCrypt

* Formal verification framework

* Uses game-based security proofs to model adversaries

* Employs interactive theorem proving to verify correctness

* Ensures PQC algorithms (e.g., Kyber) are mathematically secure
 Security Proofs in EasyCrypt (Kyber Example):

* Goal: Show adversary cannot distinguish between two encapsulated secrets (IND-
CPA)

* Method: Define a security experiment where adversary tries to to guess which
shared secret was encapsulated

Formal Security Proof in EasyCrypt

* Define Kyber’s KEM operations in EasyCrypt

* The adversary chooses two shared messages: m0, m1

A random one (b) is encapsulated and the ciphertext is given to the
adversary

* The attacker can query the decapsulation oracle (but not on the
challenge ciphertext)

* If the adversary guesses b correctly with probability >50%
* = Kyber is insecure!

e Security is proven via game reduction

* EasyCrypt provides an interactive theorem prover that checks every
step of the proof formally

Formal Verification: Programming Languages

* C has been standard language for writing crypto implementations
 Reminder: classical crypto standards should NOT apply to PQC
* So, should we still use C for PQC algorithms?

e Cis not ideal for PQC:
* Lack of built-in memory safety
* Unpredictable optimizations by compilers
* NO built-in formal verification

“Security engineers have been fighting with C compilers for years”
--Simon, Chisnall, Anderson, 2018
“We argue that we must stop fighting the compiler, and instead make it our ally”

C/C++ versus Rust for Secure cryptography pQSecure@

C-to-Rust Cryptography

C source code

1 #define KYBER_INDCPA_MSGBYTES 123
2 #define KYBER_N 256

3 #define KYBER_Q 3329

4

5 #include <stdint.h>

6

7 void poly_tomsg(uint8_t msg[KYBER_INDCPA_MSGBYTES], const poly *a)
8~ {

9 unsigned int 1i,3j;
10 uint32_t t;

11

12~ for(i=0;1<KYBER_N/8;i++) {

13 msg[i] = 0;

14 ~ for(j=0;j<8;j++) {

15 t = a->coeffs[8*1+7];

16 t += ((intle_t)t >> 15) & KYBER_Q;
17 t = (((t << 1) + KYBER_Q/2)/KYBER_Q) & 1;
18 msg[i] |= t << j;

19 }

20 3

21 '}

C converts to Rust

* Translation uses Raw pointer instead of Rust native type

* Non idiomatic Rust, relies on C type

c2rust.com

Generated Rust source code

8~
9
10
11
12
13 ~
14
15
16 -
17
18 -
19~
20
21
22
23
24
25
26
27
28
29
30

mLiv_uiiy L |
pub unsafe extern "(" fn poly_tomsg(mut msg: *mut uint8_t, mut a: *const libc::¢
let mut i: libc::c_uint = @;
let mut j: libc::c_uint = @;
let mut t: uint32_t = @;
i =0 as libc::c_int as libc::c_uint;
while 1 < (256 as libc::c_int / 8 as libc::c_int) as libc::c_uint {
*msg.offset(i as isize) = @ as libc::c_int as uint8_t;
j = @ as libc::c_int as libc::c_uint;
while j < 8 as libc::c_int as libc::c_uint {
t = (t as libc::c_uint)

.wrapping_add(
(t as intl6_t as libc int >> 15 as libc::c_int

& 3329 as libc::
) as uint32_t as uint32_t;
t = (t << 1 as libc::c_int)
.wrapping_add((3329 as libc::c_int / 2 as libc::c_int) as libc::
.wrapping_div(3329 as libc::c_int as libc::c_uint)
& 1 as libc::c_int as libc::c_uint;
let ref mut fresh® = *msg.offset(i as isize);
*fresh® = (*fresh® as libc::c_uint | t << j) as uint8_t;
j = j.wrapping_add(1);

) as libc::c_uint,

i.wrapping_add(1);

=> Less safe, less readable, and more error-prone than idiomatic Rust code written from scratch.

Pure Rust implementation PQSecure@

fn poly_tomsg(msg: &mut [u8; KYBER_INDCPA_MSGBYTES], a: &Poly) {
for (msg_byte, coeffs) in msg.iter_mut().zip(a.coeffs.chunks(8)) {
*msg_byte = coeffs.iter().enumerate().fold(0, |acc, (j, &coeff)| {
let t =
((((coeff as u32) << 1)
.wrapping_add(1665)
.wrapping_mul(80635) >> 28) & 1)
as u8;
acc | (t << j)
1)

Final Notes

* PQC’s complexity requires rigorous security guarantees

* Formal Verification # academic concept

e ...it is essential to securing next-gen crypto implementations

* Tools like Jasmin and EasyCrypt are advancing verification in PQC

e Continued advancements must be made to ensure correctness,
security, and efficiency in PQC

* Al-driven automation and increased industry adoption promises a
bright future for PQC and formal verification!

Questions? PQSecur‘e@

