
OpenSSL integration in .NET

THE GOOD AND THE CHALLENGING



About me
Radek Zikmund

Software Engineer at Microsoft

.NET Networking team
◦ Current maintainer of System.Net.Security namespace + more
◦ Contributor to System.Security.Cryptography

rzikm



Agenda
.NET and Linux

OpenSSL vs Schannel

Targeting .NET for Linux distributions

Current technical challenges



.NET and Linux



.NET and Linux

.NET Framework – the original windows-only implementation

.NET Core / .NET – open source, cross platform reimplementation
◦ dotnet/runtime
◦ 2016 – first release

.NET relies on platform/OS libraries for cryptography
◦ Windows – Schannel, Linux – OpenSSL, OSX – Security Framework, …
◦ Pros

◦ Faster security updates, Compliance, FIPS certification
◦ Better integration into OS’s trust model (certificate stores, etc.)
◦ Respecting global system configuration (openssl.cnf)

◦ Cons
◦ Behavioral differences between OS/distro versions
◦ Linux: multiple OpenSSL versions to support

https://github.com/dotnet/runtime


OpenSSL vs Schannel



OpenSSL vs Schannel
Most of the .NET API shape has been inherited from .NET Framework

◦ with Schannel and CAPI as TLS/crypto backends
◦ Attempt to match the behavior on other platforms (Linux, Mac)

Notable differences
◦ Architectural difference – storing certificate private keys out-of-process (Schannel) vs in-process 

(OpenSSL)
◦ Mostly matter of documentation

◦ Single machine store (/etc/ssl/certs) vs multiple stores (My, CA, …)
◦ Emulated and stored in ~/.dotnet/corefx/cryptography/x509stores/{StoreName}

◦ CAPI cert verification routine downloads intermediates and CRLs/OCSP
◦ Downloading and caching implemented in C# in PAL layer for Linux for parity



Targeting .NET for Linux



Targeting .NET for Linux
Goal:

◦ One set of binaries for all Linux distributions
◦ Enable customers to do the same for their .NET applications self-contained deployments

Challenge: Different linux distros ship with different dependencies version
◦ glibc, OpenSSL … 

Glibc compatibility => build on a system with low glibc version
◦ .NET 9 (latest release, released in 2024) is built on Ubuntu 16.04 (!!)
◦ .NET 10 (next LTS release) is built on Ubuntu 18.04

What about OpenSSL?



Targeting .NET for multiple OpenSSL 
versions
Cannot link statically

◦ Cons: Security updates, compliance issues (shipping cryptography, FIPS certification)…

Cannot link dynamically
◦ Target distro likely ships OpenSSL version

Solution: load and probe for OpenSSL manually on startup
◦ Intermediate “shim” library that provides unified interface to .NET



OpenSSL integration in .NET
Application code

.NET libraries

Windows PAL layer Linux PAL layer

Schannel (Win32 API)

libSystem.Security.Cryptograp
hy.Native.Openssl.so

libssl.so libcrypto.so

libSystem.Security.Cryptograp
hy.Native.Apple.dylib

OSX PAL layer

Security Framework

.NET
runtime

C#

Native



Initialization



Loading OpenSSL functions



Loading OpenSSL functions



Fallback functions
Usually used for functions which used to be 
macros in previous library versions



Missing functions

Used for optional features available only in newer 
OpenSSL versions

Compiling against old OpenSSL headers?
◦ => need to provide signatures



Technical challenges
WHAT COULD GO WRONG?



Mysterious bugs
OpenSSL error with Ubuntu 22.04 on Arm32 architecture · Issue #66310 · dotnet/runtime

◦ “`dotnet build` crashes with `error:0A0000BF:SSL routines::no protocols available`”
◦ => .NET is unusable on Arm32 Ubuntu 22.04

Root cause:
◦ parameter to SSL_CTX_set_options changed from 32-bit to 64-bit between OpenSSL 1.1 and 3.0
◦ .NET was compiled against OpenSSL 1.1 headers, Ubuntu 22.04 has OpenSSL 3.0
◦ Arm32 calling convention expects 32bit args in registers, 64bit args on stack
◦ We were passing garbage to OpenSSL

https://github.com/dotnet/runtime/issues/66310




How did we fix it?



Multiple OpenSSL versions in one process
Unsupported in general

MsQuic and QUIC+HTTP/3 support in .NET (since 2022)
◦ No QUIC-enabling API available in OpenSSL at the time
◦ MsQuic

◦ Statically linked against a modified fork of libssl
◦ Dynamically linked against libcrypto

MsQuic did not load on Ubuntu 22.04 (OpenSSL 1.1 vs 3.0)
◦ Temporary solution: installing OpenSSL 1.1 libs alongside 3.0 for compatibility
◦ Long-term solution: OpenSSL 3.0-flavored MsQuic build

Future solution: MsQuic uses OpenSSL 3.5



Current challenges



CRLs and High memory usage
High native memory usage during CRL check for the server not featuring OCSP stapling · Issue 
#108557 · dotnet/runtime

Scenario – application regularly connecting to an external server with a cert with large (~10MB) 
CRL

Application consumes GBs of RAM more than expected

Debug tools show no memory leaks

https://github.com/dotnet/runtime/issues/108557
https://github.com/dotnet/runtime/issues/108557


Mall_info dump
ℝ"ℝ℩ ɏ"%ɏ"͉ƒ%ℚ⁘ℂ%⁘℩ ℚ˾ ℙℝ%͉ℂℝℂ᷈ "%⁘""₧ͼ₧ℍͽ⁘₧℩ "ℍ℩ ₧ç: ₧̸ ģĹН̌ ſ Ĉ⁜₧%%ℙ%₧} : ₧Ũ̌ ũˇ ĥĈā
éŲũɏŨŨ̌ ̸ ̸ Ĉā₧Ņ̸ ˇ ĆĈ₧̌ ŘŘŲĆ̌ ſ Ĉā₧ϽşЦſ ĈŅϾ⁘₧ ₧ ₧ ℚ⁜ℙ%ℝ⁜ℚ℩ ℝ⁜"͉ℕ
é ̅ ŨşĈģ₧ŲĤ₧ĤģĈĈ₧Ćĳ ̅ ũőŅ⁘₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ℙ⁜ℂ℩ ͉
é ̅ ŨşĈģ₧ŲĤ₧ĤģĈĈ₧Ĥ̌ Ņſ şĹũ₧şŘŲĆőŅ⁘₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧%ℚ⁜ℕℂ%
é ̅ ŨşĈģ₧ŲĤ₧ŨŨ̌ ̸ ̸ Ĉā₧ģĈĥĹŲũŅ⁘₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ℂ
ª ̸ ˇ ĆĈ₧̌ ŘŘŲĆ̌ ſ Ĉā₧Ĺũ₧ŨŨ̌ ̸ ̸ Ĉā₧ģĈĥĹŲũŅ₧ϽşЦſ ĈŅϾ⁘₧ ₧ ₧℩ ͉ ℍ⁜"%ℕ
̅ ŅŨşŘőŅ⁘₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ "
ª ̸ ˇ ĆĈ₧Ĺũ₧ĤģĈĈā₧Ĥ̌ Ņſ şĹũ₧şŘŲĆőŅ₧ϽşЦſ ĈŅϾ⁘₧ ₧ ₧ ₧ ₧ ℕℂ%⁜ℚ"ℍ
ƒŲſ ˇ Ř₧̌ ŘŘŲĆ̌ ſ Ĉā₧Ņ̸ ˇ ĆĈ₧ϽşЦſ ĈŅϾ⁘₧ ₧ ₧ ₧ ₧ ₧ ₧ ₧ ͉ ⁜ℍ℩ ℝ⁜ℙℂℕ
ƒŲſ ˇ Ř₧ĤģĈĈ₧Ņ̸ ˇ ĆĈ₧ϽşЦſ ĈŅϾ⁘₧ ℚ⁜ℙ"ℝ⁜℩ ͉ ͉ ⁜ℂℕ"
ƒŲ̸ ɏŨŲŅſ ⁜₧ģĈŘĈ̌ Ņ̌ şŘĈ₧Ņ̸ ˇ ĆĈ₧ϽşЦſ ĈŅϾ⁘₧ ₧ ₧ ₧ ₧ ₧ ₧%ℂ%⁜ℚ"ℍ



Root cause
Native heap fragmentation



Simple repro



Root cause
Native heap fragmentation

Large CRL => lots of small objects allocated in X509_CRL object => lots of memory ends up in 
malloc free lists

.NET async programming model – logical task can move between threads
◦ Memory associated with one TLS connection is allocated from different threads
◦ => distributed across different malloc arenas (up to 8x{CPU core count})

Some small allocations keeps malloc from coalescing and releasing free memory



Solution?
No good solution, only workarounds with downsides

Disable CRL checking
◦ May go against customer’s company policies

Lower MALLOC_MAX_ARENA
◦ Increases lock contention

Replace malloc implementation
◦ Complicates app deployment

Regularly call malloc_trim()
◦ Does not work in all cases

Implement internal cache for X509_CRL objects
◦ Introduces complexity



Q&A


