2 TWO SIGMA

Op

00.00.00

S

SL needs an

N

Nico Williams

compiler

a What is ASN.1

* Abstract Syntax Notation 1: an IDL
* Also a family of encoding rules (ERS)

- BER (and DER and CER) (tag-length-value)
- OER (and PER) (XDR-like, no tags)

- XER (XML

- JER (JSON!)

- GSER, etc.

What is ASN.1

Certificate ::= SEQUENCE {
tbsCertificate TBSCertificate,
signatureAlgorithm Algorithmldentifier,
signatureValue BIT STRING

}

-

What is ASN.1

TBSCertificate ::= SEQUENCE {

version [0] EXPLICIT Version DEFAULT v1,
serialNumber CertificateSerialNumber,
signature Algorithmldentifier,

issuer Name,

validity Validity,

subject Name,

subjectPublicKkeylnfo SubjectPublicKeylnfo,
issuerUniquelD [1] IMPLICIT Uniqueldentifier OPTIONAL,
subjectUniquelD [2] IMPLICIT Uniqueldentifier OPTIONAL,
extensions [3] EXPLICIT Extensions OPTIONAL

What is ASN.1

* It's ubiquitous
- Kerberos
- X.509/PKIX
- lots of ITU-T and financial protocols

* Why not Protocol Buffers, amirite

| What is ASN.1

* ASN.1 the syntax:

- X.680 (base), x.681 (10S), x.682 (constraints), x.683
(parameterization)

* ERS

- X.690 (BER/DER/CER), X.691 (PER), X.693 (XER), X.696
(OER), x.697 (JER)

Hand-coding ASN.1 codecs is fraught

* There have been many critical vulnerabilities due to hand-coded
codecs for things like XDR, ASN.1/DER, and so on. It’s just
repetitive, manual, and error prone.

- Transcription errors suck

* Al won't save us: its hallucinations will be hard to find in a sea of
repetitive generated code!

Benefits of having ASN.1 tooling

* Security
* Labor

* Speed of iteration
* Support new features sooner, with less effort

ASN.1 C tooling is hard to come by

* Well, is that true? There are a whole bunch...

* But OpenSSL needs an open source tool that outputs unlicensed,
unencumbered code, and it should be free and open source.

* That seems to leave these:
* SNACC /eSNACC
* asnlc
* Heimdal's ‘asnl _compile
* Write your own (not that hard)

-

Moving to ASN.1 tooling is ETOOHARD?

* It would be nice to be able to keep OpenSSL's ASN.1 C
machinery, at least for a while, no?
* Type codegen impedance mismatches

* Codegen controls needed

10

Requirements

* ASN.1 (x.680)

* DER (x.690)
* but not necessarily BER and definitely not CER

* Away to access tbsCertificate as it was received even
after decoding Certificate values

* Data type codegen controls

11

-

What about RFCs 5911 & 59122

* RFCs 5911 and 5912 are PKI that use the ASN.1 I0S to
formally specify things that earlier RFCs specified in English
prose

* Certificate’, CSR, and other Extensions

* ‘OtherName's
* Algorithm IDs and parameters
* "WITH SYNTAX" and ‘Sighed{<Type>}"

12

-

What about RFCs 5911 & 59122

-- RFC 5280

Certificate ::= SEQUENCE {
tbsCertificate TBSCertificate,
signatureAlgorithm Algorithmldentifier,
signatureValue BIT STRING

}

-- RFC 5912
Certificate ::= SIGNED{TBSCertificate}

13

| What about RFCs 5911 & 59122

TBSCertificate ::= SEQUENCE {

version [0] Version DEFAULT v1,

serialNumber CertificateSerialNumber,

signature Algorithmldentifier{ SIGNATURE-ALGORITHM,
{SignatureAlgorithms}},

issuer Name,

validity Validity,

subject Name,

subjectPublicKeyIinfo SubjectPublicKeylnfo,

[[2: -- If present, version MUST be v2
issuerUniquelD [1] IMPLICIT Uniqueldentifier OPTIONAL,
subjectUniquelD [2] IMPLICIT Uniqueldentifier OPTIONAL

11,

[[3: -- If present, version MUST be v3 --

extensions [3] Extensions{{CertExtensions}} OPTIONAL
11, ... }

-

What about RFCs 5911 & 59122

-- RFC 5280
Extension ::= SEQUENCE {
extnID OBJECT IDENTIFIER,
critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING
-- contains the DER encoding of an ASN.1 value
-- corresponding to the extension type identified
-- by extnlID

15

What about RFCs 5911 & 59122

* What can we do with RFCs 5911 and 59127

* Automatic, fully recursive, one-shot encoding and decoding of
certificates and CSRs, alg ID & params correspondence validation,
and whatnot!

16

-

What about RFCs 5911 & 59122

struct Extension {

heim_oid extnID;

int critical;

heim_octet string extnValue;

struct {

enum { choice_Extension_iosnumunknown = 0,
choice_Extension_iosnum_id_pkix_pe_authoritylnfoAccess,
... } element;

union { void * unknown;
AuthoritylnfoAccessSyntax *ext AuthoritylnfoAccess;
RV

} _ioschoice _extnValue;

}

17

| What about RFCs 5911 & 59122

git:heimdal[(HEAD detached at origin/master)]:TOP%; build/lib/asnl/asnl_print lib/asnl/fuzz-inputs/minimal-ek.crt Certificate | jq -C .

Match: Certificate

{

| head -20

18

| What about RFCs 5911 & 59122

d at o s; bui ib self-s e CepEificate gt ertificate.extensions|[] s Sl e id 9-ce-subjectAltName")

git:heimdal[(HEAD ached at origin/master)]:TO

@ 19

-

Whetting your appetite

 What if we can support codegen of modules that use
OpenSSL's ASN.1 C macros?

20

Whetting your appetite

 What if we can support codegen of modules that use
OpenSSL's ASN.1 C macros?

 Heimdal's "asnl compile™ can output a JSON
representation of an ASN.1 module that can be used to
drive codegen however you want

 One could even use |jg to drive codegen based on this!

21

“--preserve-type=TBSCertificate’

struct TBSCertificate {

heim_octet_string _save; // <-- saves the DER encoding of
// this at decode time

Version *version;

CertificateSerialNumber seriaINumber;

Algorithmldentifier signature;

Name issuer;

22

-

“--preserve-type=TBSCertificate’

* Simplifies signature validation
°* No need to re-encode

* DER would never have been needed had this been popularized 40
years ago

23

-

"--decorate=<decoration-spec>"

* Add fields for intrusive data structures to generated C structs!

* --decorate=ASNI1-TYPE:FIELD-ASN1-TYPE:fname
* --decorate=ASN1-TYPE:void*:fname
* --decorate=ASNI1-TYPE:FIELD-C-TYPE:fnamel[?]:[copyfn]:[freefn]:header

* You can decorate with another ASN.1 type, or with a host
language (C) type
* Copy constructors and destructors will work as expected

24

-

Options

* Neither asnlc nor SNACC / eSNACC support things like Heimdal's " --
preserve-binary=TYPE" option

* Heimdal and asnlc have some support for RFCs 5911 / 5912

25

-

Parsing ASN.1

* Parsing ASN.1 is tricky because it has some ambiguities
that can only be resolved when the module has been fully
parsed

* Values vs. objects
* Types vs. object sets

* Forward declarations not needed
* Need to parse the whole module first, then resolve

26

Parsing ASN.1

* "WITH SYNTAX is beyond LALR(1) parser generators

* On the plus side, LLMs are getting really good at codegen...
Writing an ASN.1 compiler is getting easier.

* And If the goal Is to produce the macro-using modules that
OpenSSL has now, then codegen should be quite easy

27

Parsing ASN.1

* At least ASN.1 can be parsed with an LL(K) parser
generator

* Or a left-recursive parser with backtracking

28

-

C data type codegen controls

* In-band controls require editing ASN.1 modules
* e.g., Size constraints on INTEGER - pick smallest int type that fits

* Qut-of-band controls require addressing by type and
member name

* e.g., DEFAULT members made pointers or not

29

-

C data type codegen controls

* Choices of base C types for base ASN.1 types
* Int sizes
* string types
* REAL type(s) (not needed for PKIX though)
* etc.

30

Codec codegen styles

* Heimdal has two compiler backends
* Codegen — function per type
* “template” — think byte-coding
* Codec perf might not matter in a crypto-heavy library

* Still, template uses less memory, thus less I-cache, d-cache,
bandwidth

31

Codec codegen styles (templates)

struct asnl _template {
uint32 ttt; // encodes tag and type info
uint32_t offset; // offset into C struct of field
const void *ptr; // pointer to sub-template or
// other relevant info

32

-

Codec codegen styles (templates)

* tt field has
* 4 bits of opcode
* 4 bits of flag
* 1 bit to indicate the type of ptr
* 2 bits of class
* 21 bits of tag number

33

-

Codec codegen styles (templates)

* struct template” could be further size-optimized, though
maybe at a cost of many more branches

- Currently templates for PKIX are 59% smaller than code

34

Practical ways forward

* Use Heimdal’'s compiler

- Directly, or indirectly using its JISON output
* Write your own tooling?

- Mimic Heimdal’'s?
* Fork Heimdal’'s?

- License Issues...

35

-

Practical ways forward

* Maybe Heimdal could donate its compiler?
- Only 21 authors, fewer when excluding trivial contributions

36

Practical ways forward (if using Heimdal'’s)

* Use Heimdal’s asnl_compile’s JSON output to drive
codegen?

* Use Heimdal’s asnl _compile?
- If using the “template” approach asnl_compile can generate

templates and OpenSSL can generate C types and an
libcrypto can provide template interpreters

37

~ https://github.com/heimdal/heimdal

* heimdal/heimdal
- lib/asn1/

https://github.com/heimdal/heimdal

