
00
.0

0.
00

OpenSSL needs an
ASN.1 compiler

Nico Williams

2

What is ASN.1

● Abstract Syntax Notation 1: an IDL
● Also a family of encoding rules (ERs)

- BER (and DER and CER) (tag-length-value)
- OER (and PER) (XDR-like, no tags)
- XER (XML!)
- JER (JSON!)
- GSER, etc.

3

What is ASN.1

 Certificate ::= SEQUENCE {
 tbsCertificate TBSCertificate,
 signatureAlgorithm AlgorithmIdentifier,
 signatureValue BIT STRING
 }

4

What is ASN.1

 TBSCertificate ::= SEQUENCE {
 version [0] EXPLICIT Version DEFAULT v1,
 serialNumber CertificateSerialNumber,
 signature AlgorithmIdentifier,
 issuer Name,
 validity Validity,
 subject Name,
 subjectPublicKeyInfo SubjectPublicKeyInfo,
 issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,
 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,
 extensions [3] EXPLICIT Extensions OPTIONAL
 }

5

What is ASN.1

● It’s ubiquitous
- Kerberos
- x.509/PKIX
- lots of ITU-T and financial protocols

● Why not Protocol Buffers, amirite

6

What is ASN.1

● ASN.1 the syntax:
- x.680 (base), x.681 (IOS), x.682 (constraints), x.683

(parameterization)
● ERs

- X.690 (BER/DER/CER), x.691 (PER), x.693 (XER), x.696
(OER), x.697 (JER)

7

Hand-coding ASN.1 codecs is fraught

● There have been many critical vulnerabilities due to hand-coded
codecs for things like XDR, ASN.1/DER, and so on. It’s just
repetitive, manual, and error prone.
- Transcription errors suck

● AI won’t save us: its hallucinations will be hard to find in a sea of
repetitive generated code!

8

Benefits of having ASN.1 tooling

 Security
 Labor
 Speed of iteration

 Support new features sooner, with less effort

9

ASN.1 C tooling is hard to come by

 Well, is that true? There are a whole bunch...
 But OpenSSL needs an open source tool that outputs unlicensed,

unencumbered code, and it should be free and open source.
 That seems to leave these:

 SNACC / eSNACC
 asn1c
 Heimdal’s `asn1_compile`
 Write your own (not that hard)

10

Moving to ASN.1 tooling is ETOOHARD?

 It would be nice to be able to keep OpenSSL’s ASN.1 C
machinery, at least for a while, no?

 Type codegen impedance mismatches
 Codegen controls needed

11

Requirements

 ASN.1 (x.680)
 DER (x.690)

 but not necessarily BER and definitely not CER
 A way to access `tbsCertificate` as it was received even

after decoding `Certificate` values
 Data type codegen controls

12

What about RFCs 5911 & 5912?

 RFCs 5911 and 5912 are PKI that use the ASN.1 IOS to
formally specify things that earlier RFCs specified in English
prose
 `Certificate`, CSR, and other `Extensions`
 `OtherName`s
 Algorithm IDs and parameters
 `WITH SYNTAX` and `Signed{<Type>}`

13

What about RFCs 5911 & 5912?

 -- RFC 5280
 Certificate ::= SEQUENCE {
 tbsCertificate TBSCertificate,
 signatureAlgorithm AlgorithmIdentifier,
 signatureValue BIT STRING
 }

 -- RFC 5912
 Certificate ::= SIGNED{TBSCertificate}

14

What about RFCs 5911 & 5912?

 TBSCertificate ::= SEQUENCE {
 version [0] Version DEFAULT v1,
 serialNumber CertificateSerialNumber,
 signature AlgorithmIdentifier{SIGNATURE-ALGORITHM,
 {SignatureAlgorithms}},
 issuer Name,
 validity Validity,
 subject Name,
 subjectPublicKeyInfo SubjectPublicKeyInfo,
 ... ,
 [[2: -- If present, version MUST be v2
 issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,
 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL
]],
 [[3: -- If present, version MUST be v3 --
 extensions [3] Extensions{{CertExtensions}} OPTIONAL
]], ... }

15

What about RFCs 5911 & 5912?

 -- RFC 5280
 Extension ::= SEQUENCE {
 extnID OBJECT IDENTIFIER,
 critical BOOLEAN DEFAULT FALSE,
 extnValue OCTET STRING
 -- contains the DER encoding of an ASN.1 value
 -- corresponding to the extension type identified
 -- by extnID
 }

16

What about RFCs 5911 & 5912?

 What can we do with RFCs 5911 and 5912?
 Automatic, fully recursive, one-shot encoding and decoding of

certificates and CSRs, alg ID & params correspondence validation,
and whatnot!

17

What about RFCs 5911 & 5912?

struct Extension {
 heim_oid extnID;
 int critical;
 heim_octet_string extnValue;
 struct {
 enum { choice_Extension_iosnumunknown = 0,
 choice_Extension_iosnum_id_pkix_pe_authorityInfoAccess,
 … } element;
 union { void *_unknown;
 AuthorityInfoAccessSyntax *ext_AuthorityInfoAccess;
 … } u;
 } _ioschoice_extnValue;
}

18

What about RFCs 5911 & 5912?

●
●

19

What about RFCs 5911 & 5912?

20

Whetting your appetite

● What if we can support codegen of modules that use
OpenSSL’s ASN.1 C macros?

21

Whetting your appetite

● What if we can support codegen of modules that use
OpenSSL’s ASN.1 C macros?

● Heimdal’s `asn1_compile` can output a JSON
representation of an ASN.1 module that can be used to
drive codegen however you want

● One could even use `jq` to drive codegen based on this!

22

`--preserve-type=TBSCertificate`

struct TBSCertificate {
 heim_octet_string _save; // <-- saves the DER encoding of
 // this at decode time
 Version *version;
 CertificateSerialNumber serialNumber;
 AlgorithmIdentifier signature;
 Name issuer;
 ...
};

23

`--preserve-type=TBSCertificate`

 Simplifies signature validation
 No need to re-encode
 DER would never have been needed had this been popularized 40

years ago

24

`--decorate=<decoration-spec>`

 Add fields for intrusive data structures to generated C structs!
 --decorate=ASN1-TYPE:FIELD-ASN1-TYPE:fname
 --decorate=ASN1-TYPE:void*:fname
 --decorate=ASN1-TYPE:FIELD-C-TYPE:fname[?]:[copyfn]:[freefn]:header

 You can decorate with another ASN.1 type, or with a host
language (C) type
 Copy constructors and destructors will work as expected

25

Options

 Neither asn1c nor SNACC / eSNACC support things like Heimdal’s `--
preserve-binary=TYPE` option

 Heimdal and asn1c have some support for RFCs 5911 / 5912

26

Parsing ASN.1

 Parsing ASN.1 is tricky because it has some ambiguities
that can only be resolved when the module has been fully
parsed
 Values vs. objects
 Types vs. object sets
 Forward declarations not needed

 Need to parse the whole module first, then resolve

27

Parsing ASN.1

 `WITH SYNTAX` is beyond LALR(1) parser generators
 On the plus side, LLMs are getting really good at codegen…

 Writing an ASN.1 compiler is getting easier.
 And if the goal is to produce the macro-using modules that

OpenSSL has now, then codegen should be quite easy

28

Parsing ASN.1

 At least ASN.1 can be parsed with an LL(k) parser
generator
 Or a left-recursive parser with backtracking

29

C data type codegen controls

 In-band controls require editing ASN.1 modules
 e.g., size constraints on INTEGER → pick smallest int type that fits

 Out-of-band controls require addressing by type and
member name
 e.g., DEFAULT members made pointers or not

30

C data type codegen controls

 Choices of base C types for base ASN.1 types
 int sizes
 string types
 REAL type(s) (not needed for PKIX though)
 etc.

31

Codec codegen styles

 Heimdal has two compiler backends
 Codegen – function per type
 “template” – think byte-coding

 Codec perf might not matter in a crypto-heavy library
 Still, template uses less memory, thus less i-cache, d-cache,

bandwidth

32

Codec codegen styles (templates)

struct asn1_template {
 uint32_t tt; // encodes tag and type info
 uint32_t offset; // offset into C struct of field
 const void *ptr; // pointer to sub-template or
 // other relevant info
};

33

Codec codegen styles (templates)

 `tt` field has
 4 bits of opcode
 4 bits of flag
 1 bit to indicate the type of `ptr`
 2 bits of class
 21 bits of tag number



34

Codec codegen styles (templates)

● `struct template` could be further size-optimized, though
maybe at a cost of many more branches
- Currently templates for PKIX are 59% smaller than code

35

Practical ways forward

● Use Heimdal’s compiler
- Directly, or indirectly using its JSON output

● Write your own tooling?
- Mimic Heimdal’s?

● Fork Heimdal’s?
- License issues...

36

Practical ways forward

● Maybe Heimdal could donate its compiler?
- Only 21 authors, fewer when excluding trivial contributions

37

Practical ways forward (if using Heimdal’s)

● Use Heimdal’s asn1_compile’s JSON output to drive
codegen?

● Use Heimdal’s asn1_compile?
- If using the “template” approach asn1_compile can generate

templates and OpenSSL can generate C types and an
libcrypto can provide template interpreters

38

https://github.com/heimdal/heimdal
● heimdal/heimdal

– lib/asn1/

https://github.com/heimdal/heimdal

