LUKS2 Disk Encryption and OpenSSL

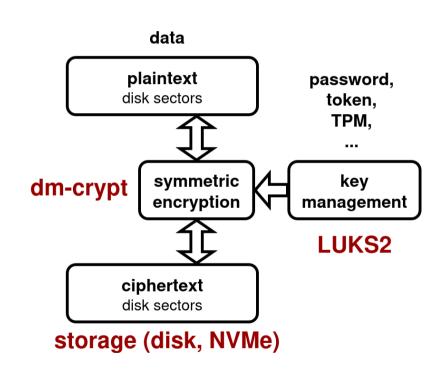
Milan Brož mbroz@openssl.org

Milan Brož mbroz@openssl.org

Intro

- maintainer of cryptsetup / LUKS2 project since 2009
- researcher in storage security

... and now employed by OpenSSL


This talk is about Linux open-source disk encryption that uses the OpenSSL library.

Cryptsetup is (and will be) developed independently of the OpenSSL Corporation.

Disk (sector) encryption, LUKS2, dm-crypt...

- LUKS2 (Linux Unified Key Setup)
- dm-crypt (Linux kernel driver)
 - kernel crypto API backend
- (planned) ublk alternative
 - dm-crypt replaced by userspace daemon
 - OpenSSL backend
- cryptsetup project implements LUKS1/2 (and other) formats

cryptsetup uses OpenSSL as default cryptographic library backend

How it relates to OpenSSL?

- two areas
 - 1) key management (LUKS key slots handling)
 - password-based key derivation
 - 2) data encryption (algorithms and modes)
 - symmetric encryption
 - authenticated encryption (AEAD)
- prototyping of new algorithms
 - OpenSSL providers

LUKS2 key management

- LUKS uses key hierarchy (keyslot key, volume key)
- keyslot key is derived from "password" with PBKDF
- PBKDF Password-Based Key Derivation

TPM,

PBKDF2, Argon2

metadata
LUKS

1 2 3 ... encrypted data

password,
token,
token,

password
keyslot
keyslot
volume key

decryption

PASSWORDS NOT DEAD

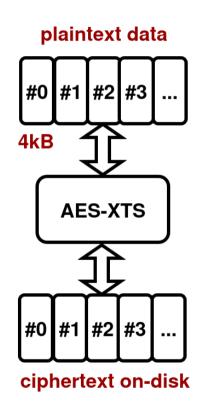
for data encryption

Argon2 KDF extension for OpenSSL was initiated as part of cryptsetup development

Argon2 KDF & OpenSSL

- PBKDF2 can be highly optimized on GPUs / ASICs
 - very fast and cost-effective brute force search
- Argon2 was selected in Password-Hashing Competition (2015) as a replacement
- Argon2 is memory-hard algorithm
 - iterations, threads and required memory costs
- NIST / FIPS still do not "allow" it (despite mentions of memory-hard KDFs in docs)

Argon2 KDF extension for OpenSSL was initiated as part of cryptsetup development


Argon2 KDF & OpenSSL II.

- Argon2 used in LUKS2 since 2014
- we started with embedded reference code
- Argon2 integration to OpenSSL was initially bachelor thesis (by Čestmír Kalina)
 - started 2019, defended 2020
 - just ~3 years of discussions
 (yeah, I know, it required adding threads :-)
 - finally released with OpenSSL 3.2 (2023)

Disk sector encryption

- "the last sort of cold storage encryption"
- disk sector encrypted independently
 - tweaked by sector number
 - length-preserving encryption
- provides confidentiality, not integrity protection
- performance is important here
- today everyone uses XTS mode (AES-XTS)

Authenticated encryption myth

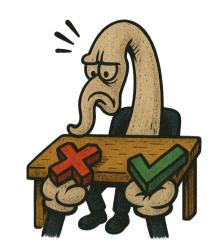
- cryptography textbooks mention disk encryption must be length-preserving
- Authenticated Encryption (with Additional Data) AEAD is possible we only need space for authentication tag

sector #n 4096 bytes

 but this is exactly what enterprise NVMe drives can provide today!

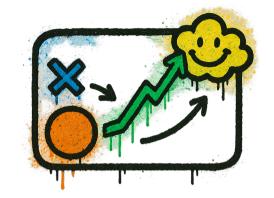
firmware for common drives ...

sector with inline metadata


sector #n #n 4096B data 64B

XTS encryption mode issues

- designed for performance
- used in all major disk encryption schemes today (even hardware like Opal)
- increasing storage capacity uncovers serious issues for XTS
 - increased probability of collisions, leading to new attacks
- IEEE (and NIST) is currently updating XTS specification
 - introducing key scopes (maximal amount of data for one key)
- some selected parameters remains mystery, we tried to summarize it XTS mode revisited: high hopes for key scopes? https://arxiv.org/abs/2502.18631
- there are alternatives (Adiantum, HCTR2) and even new research (like double-decker algorithms)


Standards, certifications & Co.

- disk encryption does not need post-quantum cryptography
- it needs more suitable symmetric encryption modes
- storage encryption is very long-term (decades)
 - we need to prepare now
- current standards are focusing on preserving existing modes (HW)
- we need try to use new secure encryption modes / algorithms
 - while keeping less secure options where certification is needed

What's the plan?

- do not invest time in fixing unfixable (XTS key scopes)
- prototype use of new encryption algorithms and modes
 - using OpenSSL providers
 - revise authenticated encryption options
- hope that standards allowing new algorithms are updated
- hope that storage vendors will support sector extensions for common drives (we can already emulate it in software through dm-integrity)

Milan Brož mbroz@openssl.org

Thanks for your attention!

Questions?