LUKS2
Disk Encryption
and OpenSSL

Milan Broz
mbroz@openssl.org

Milan Broz
mbroz@openssl.org

Intro

* maintainer of cryptsetup / LUKS2 project since 2009
* researcher in storage security

... and now employed by OpenSSL

This talk is about Linux open-source disk encryption
that uses the OpenSSL library.

Cryptsetup is (and will be) developed independently of the
OpenSSL Corporation.

Disk (sector) encryption, LUKS2, dm-crypt...

LUKS?2 (Linux Unified Key Setup) data
dm-crypt (Linux kernel driver) Pla 's';‘g;‘fs] patﬁtﬁrd
- kernel crypto API backend TP,
(planned) ublk alternative dm-crypt [symmetrlc]4:{ key]
encryption management
- dm-crypt replaced by
userspace daemon @ LUKS2
- OpenSSL backend [gllg(h;r:g’r‘:]
cryptsetup project implements storage (disk, NVMe)

LUKS1/2 (and other) formats

cryptsetup uses
OpenSSL as default
cryptographic
library backend

How it relates to OpenSSL?

* two areas

1) key management (LUKS key slots handling)
* password-based key derivation

2) data encryption (algorithms and modes)
e symmetric encryption
* authenticated encryption (AEAD)
e prototyping of new algorithms

- OpenSSL providers

LUKS2 key management

LUKS uses key hierarchy (keyslot key, volume key)
keyslot key is derived from “password” with PBKDF
PBKDF - Password-Based Key Derivation

3]..

encrypted data]

PBKDF2, Argon2 keyslots
metadata
[LUKS 112
password, ‘ ‘

token,

TPM, =) PBKDF mp

keyslot
ecryption

=

+

volume key
for data encryption

Argon2 KDF
extension for
OpenSSL was
initiated as part
of cryptsetup
development

Argon2 KDF & OpenSSL

PBKDF2 can be highly optimized on GPUs / ASICs

— very fast and cost-effective brute force search

Argon2 was selected in Password-Hashing
Competition (2015) as a replacement

Argon2 is memory-hard algorithm
- iterations, threads and required memory costs

NIST / FIPS still do not “allow” it
(despite mentions of memory-hard KDFs in docs)

Argon2 KDF
extension for
OpenSSL was
initiated as part
of cryptsetup
development

Argon2 KDF & OpenSSL II.

* Argon2 used in LUKS2 since 2014
 we started with embedded reference code

* Argon2 integration to OpenSSL was initially
bachelor thesis (by Cestmir Kalina)

- started 2019, defended 2020

- just ~3 years of discussions
(yeah, | know, it required adding threads :-)

- finally released with OpenSSL 3.2 (2023)

Disk sector encryption

* “the last sort of cold storage encryption”

» disk sector encrypted independently
- tweaked by sector number

- length-preserving encryption
e provides confidentiality, not integrity protection
e performance is important here

e today everyone uses XTS mode (AES-XTYS)

plaintext data

#0]#1 #2|#3] ...

4kB

[AES-XTS]

#0]#1 #2|#3] ...

ciphertext on-disk

Authenticated encryption myth

e cryptography textbooks mention disk encryption
must be length-preserving

* Authenticated Encryption (with Additional Data) - AEAD 0
is possible - we only need space for authentication tag

common sector sector with inline metadata
sector #n sector #n #n
4096 bytes 4096B data 64B
* but this is exactly what enterprise $ nvme list /dev/nvmedni
NVMe drives can provide today! Node ... Format

« firmware for common drives ... /dev/nvmeénl ... 4 KiB + 64 B

XTS encryption mode issues

* designed for performance
* used in all major disk encryption schemes today (even hardware like Opal)

* increasing storage capacity uncovers serious issues for XTS
~ increased probability of collisions, leading to new attacks
* |EEE (and NIST) is currently updating XTS specification
~ introducing key scopes (maximal amount of data for one key)

* some selected parameters remains mystery, we tried to summarize it
XTS mode revisited: high hopes for key scopes?
https://arxiv.org/abs/2502.18631

* there are alternatives (Adiantum, HCTR2) and
even new research (like double-decker algorithms)

https://arxiv.org/abs/2502.18631

Standards, certifications & Co.

e disk encryption does not need post-quantum cryptography

* it needs more suitable symmetric encryption modes

* storage encryption is very long-term (decades)

- we need to prepare now
* current standards are focusing on preserving existing modes (HW)

* we need try to use new secure encryption modes / algorithms

- while keeping less secure options where certification is needed

What's the plan?

e do not invest time in fixing unfixable
(XTS key scopes)

e prototype use of new encryption algorithms and modes
— using OpenSSL providers

— revise authenticated encryption options
* hope that standards allowing new algorithms are updated

* hope that storage vendors will support sector extensions for common drives
(we can already emulate it in software through dm-integrity)

Thanks for your attention!

Milan Broz o
mbroz@openssl.org Questions:

