I i

Implementing ogs-provider

or: How to add experimental PQC to OpenSSL

Michael Baentsch

h.




Overview

* Background

* OpenSSL provider concept

* oqgsprovider design principles
* History
* Features

* [Lessons learned
* Qutlook

b.




Background (I)

* 1bOQS («Open Quantum Safe)

- Collection of PQC algs in NIST competition
- C APIs separate for SIGs and KEMs

- «No winners chosen»
* Application/library integrations

- To facilitate «higher-level» PQC use/experimentation

- €.g., openssh, openssl

L.




Background (II)

* openssl fork adding libogs support

- Created 2018 by Microsoft Research ((@christianpaquin)

- Facilitating TLS and hybrid (classic+PQ) experimentation
- Regularly updated to follow OpenSSL evolution (v111)

- Used for app integrations (httpd, curl, haproxy, etc.)

- Maintenance became unwildy over time

* Following NIST changes
* Following OpenSSL changes

L.




OpenSSL providers

* Introduced in OpenSSL 3.0

* Permit extension of core crypto via defined APIs

* e.g., ciphers, digests, signatures, KEMs, RNGs, ...
* Important for PQC: KEM & SIGs (& key mgmt)
* Dynamic or static add-on to OpenSSL 1nstallation

* Also used openssl-internally for default crypto,
FIPS crypto (+deprecated/legacy crypto)

L.




ogs-provider design principles

* «Choose no winner»: Treat all PQ candidate algs alike

- using libogs APIs — adding new algorithms to be trivial
* Add PQC in all OpenSSL versions >= 3.0

- Evolving with OpenSSL feature set — remain useful over time
* As easy to maintain and use as possible

- Generate as much code as possible & do not duplicate other FOSS work
- Retain algorithm names across algorithm releases

- Primary focus: shared lib deployment
— Do not rely on internal OSSL crypto — useful in any openssl(3) install

L.




ogs-provider desigh

OpenSSL-based applications

libcrypto & libssl

Provider API Provider capabilities

oqgs-provider

Hybrid PQC logic Pure PQC logic
EVP API OQS API
libcrypto libogs
EVP API

libcrypto




History (1)

* 2021

- Integration of all OQS KEMs (except ClassicMcEliece)

- Linux only

- «Extraction» from OpenSSL code base (@levitte)
- Addition of hybrid KEMs ((@bhess)

* 2022
- Addition of all OQS SIG algs
- First release

- Enhancements to OpenSSL 3 (.2): pluggable sig logic added
- Hybrid SIG support & export/import added«(X.509)

L.




History (II)

2023

- More platforms supported (MacOS, Windows)
- Static builds supported
- Tooling support for IETF PQ cert hackathons

* 2024

- Composite sigs added (Dilithium-only, (@feventura)
- PQCA: Enthusiastic adopters with a different perspective

* 2025

- Still new algs added but reduction of feature set

L.




Features

152 PQ algs enabled

- For TLS 1.3 KEM ops
- For X.509 cert gen & TLS 1.3 sig ops
- Using standard openssl tooling & APIs

* Configuration-file driven code generation
- (Auto-)Integrating any algorithm supported by libogs
- Creating arbitrary hybrid (PQ/classic crypto) variants

* (Auto)Adapting to OpenSSL 3.X runtime

* Runs on many Unix variants (incl. MacOS) & Windows '

L.




Lessons learned: Contributing

* Reach out to community & core team, as

- some things may not be documented

- some things may not work as intended
- some features may be missing

- some features may be buggy

* Do
- Be courteous and considerate of alternative assumptions
- Be diligent trying stuff first yourself

- Explain your assumptions

- Provide code samples

L.



Lessons learned: ogs-provider

* Design concepts worked
- Adding new PQ algorithms is trivial
- «hybridization» to these, too

- One binary can be used with any OpenSSL 3.x install

* Adapting its own capabilities to those of base platform

* «winnery/std PQ algs fall away automatically

* OpenSSL testing
- ogs-provider as external «stress test»

* Per-algorithm optimizations not feasible

L.




Lessons learned: FOSS cooperation

* Community (r)evolution: Make people meet

* Non-communicated assumptions are bad, e.g.

- how project 1s meant to be used / whom it caters for

- how to treat contributors, e.g., individual vs. corporate
* Mismatch of procedures to contributor base: size & type

* Clashes of open-source control philosophies

- Trust the do-ers

- Reign in management by non-contributors

L.




Challenges encountered

* Where to plug OpenSSL base support
- ¢.g. hashes, classic KEMs in oqé-provider
- ¢.2. RNG, SHA3 1n libogs

* Lots of boilerplate code

- Heavy use of macros

- Or maybe a generator like QUBIP/aurora
* Still a dependence on NIDs
- Especially in X.509 code

L.




Possible future WOﬂ(

* Completely get rid of NID logic

* Demonstrate best practice in the code
- Not competing with commercially-supported FOSS
* Assist researchers in making better reference code
- €.g., maintainability, upstream-ability

* Create additional layer to abstract location of PQC algorithm
(underneath EVP API or libogs API)

- Would enable clean hybrid|composite implementations

- Would enable use of std PQC in ogs-provider

L.




alt-pqc provider design strawmen

libcrypto & libssl

Provider API

Provider capabilities

hybrid-provider

OSSL PQC code
EVP API

libcrypto

3rd party PQC code
OQS API

libogs
EVP API

libcrypto

libcrypto & libssl

Provider API Provider capabilities
alg-specific-provider
Dedicated optimization backend

alg-specific API

e.g., pqcp-algorithm




Thank You!

* All Contributions VERY welcome

* Participate at github.com/open-quantum-safe/ogs-provider

- Alternative design principles under discussion

Discussion in GitHub plus virtual meeting on Oct 23, 2025
(participation link at https://pqca.org/calendar)

* Questions?

. Anytime via GH: @baentsch or email: info@baentsch.‘ch

L’




This work 1s licensed under

a Creative Commons Attribution-ShareAlike 3.0 Unported License.

It makes use of the works of
Kelly Loves Whales and Nick Merritt.




