
Implementing oqs-provider
or: How to add experimental PQC to OpenSSL

Michael Baentsch

Overview

 Background
 OpenSSL provider concept
 oqsprovider design principles
 History
 Features
 Lessons learned
 Outlook

Background (I)

 libOQS («Open Quantum Safe»)
- Collection of PQC algs in NIST competition
- C APIs separate for SIGs and KEMs
- «No winners chosen»

 Application/library integrations
- To facilitate «higher-level» PQC use/experimentation
- e.g., openssh, openssl

Background (II)

 openssl fork adding liboqs support
- Created 2018 by Microsoft Research (@christianpaquin)
- Facilitating TLS and hybrid (classic+PQ) experimentation
- Regularly updated to follow OpenSSL evolution (v111)
- Used for app integrations (httpd, curl, haproxy, etc.)
- Maintenance became unwildy over time

 Following NIST changes
 Following OpenSSL changes

OpenSSL providers

 Introduced in OpenSSL 3.0
 Permit extension of core crypto via defined APIs
 e.g., ciphers, digests, signatures, KEMs, RNGs, …
 Important for PQC: KEM & SIGs (& key mgmt)
 Dynamic or static add-on to OpenSSL installation
 Also used openssl-internally for default crypto,

FIPS crypto (+deprecated/legacy crypto)

oqs-provider design principles

 «Choose no winner»: Treat all PQ candidate algs alike
- using liboqs APIs → adding new algorithms to be trivial

 Add PQC in all OpenSSL versions >= 3.0
- Evolving with OpenSSL feature set → remain useful over time

 As easy to maintain and use as possible
- Generate as much code as possible & do not duplicate other FOSS work
- Retain algorithm names across algorithm releases
- Primary focus: shared lib deployment
→ Do not rely on internal OSSL crypto → useful in any openssl(3) install

oqs-provider design

oqs-provider

libcrypto liboqs

libcrypto & libssl

libcrypto

Provider API

EVP API

Provider capabilities

EVP API

OQS API

Pure PQC logicHybrid PQC logic

OpenSSL-based applications

History (I)

 2021
- Integration of all OQS KEMs (except ClassicMcEliece)
- Linux only
- «Extraction» from OpenSSL code base (@levitte)
- Addition of hybrid KEMs (@bhess)

 2022
- Addition of all OQS SIG algs
- First release
- Enhancements to OpenSSL 3 (.2): pluggable sig logic added
- Hybrid SIG support & export/import added (X.509)

History (II)

 2023
- More platforms supported (MacOS, Windows)
- Static builds supported
- Tooling support for IETF PQ cert hackathons

 2024
- Composite sigs added (Dilithium-only, @feventura)
- PQCA: Enthusiastic adopters with a different perspective

 2025
- Still new algs added but reduction of feature set

Features

 152 PQ algs enabled
- For TLS 1.3 KEM ops
- For X.509 cert gen & TLS 1.3 sig ops
- Using standard openssl tooling & APIs

 Configuration-file driven code generation
- (Auto-)Integrating any algorithm supported by liboqs
- Creating arbitrary hybrid (PQ/classic crypto) variants

 (Auto)Adapting to OpenSSL 3.x runtime
 Runs on many Unix variants (incl. MacOS) & Windows

Lessons learned: Contributing

 Reach out to community & core team, as
- some things may not be documented
- some things may not work as intended
- some features may be missing
- some features may be buggy

 Do
- Be courteous and considerate of alternative assumptions
- Be diligent trying stuff first yourself
- Explain your assumptions
- Provide code samples

Lessons learned: oqs-provider

 Design concepts worked
- Adding new PQ algorithms is trivial
- «hybridization» to these, too
- One binary can be used with any OpenSSL 3.x install

 Adapting its own capabilities to those of base platform
 «winner»/std PQ algs fall away automatically

 OpenSSL testing
- oqs-provider as external «stress test»

 Per-algorithm optimizations not feasible

Lessons learned: FOSS cooperation

 Community (r)evolution: Make people meet
 Non-communicated assumptions are bad, e.g.

- how project is meant to be used / whom it caters for
- how to treat contributors, e.g., individual vs. corporate

 Mismatch of procedures to contributor base: size & type
 Clashes of open-source control philosophies

- Trust the do-ers
- Reign in management by non-contributors

Challenges encountered
 Where to plug OpenSSL base support

- e.g. hashes, classic KEMs in oqs-provider
- e.g. RNG, SHA3 in liboqs

 Lots of boilerplate code
- Heavy use of macros
- Or maybe a generator like QUBIP/aurora

 Still a dependence on NIDs
- Especially in X.509 code

Possible future work
 Completely get rid of NID logic
 Demonstrate best practice in the code

- Not competing with commercially-supported FOSS
 Assist researchers in making better reference code

 - e.g., maintainability, upstream-ability
 Create additional layer to abstract location of PQC algorithm

(underneath EVP API or liboqs API)
- Would enable clean hybrid|composite implementations
- Would enable use of std PQC in oqs-provider



alt-pqc provider design strawmen

hybrid-provider

OSSL PQC code 3rd party PQC code

libcrypto liboqs

libcrypto & libssl

libcrypto

Provider API

EVP API

Provider capabilities

EVP API

OQS API

alg-specific-provider

Dedicated optimization backend

e.g., pqcp-algorithm

libcrypto & libssl
Provider API Provider capabilities

alg-specific API

Thank You!
All Contributions VERY welcome
Participate at github.com/open-quantum-safe/oqs-provider

- Alternative design principles under discussion
Discussion in GitHub plus virtual meeting on Oct 23, 2025
(participation link at https://pqca.org/calendar)

Questions?

 Anytime via GH: @baentsch or email: info@baentsch.ch

This work is licensed under
a Creative Commons Attribution-ShareAlike 3.0 Unported License.

It makes use of the works of
Kelly Loves Whales and Nick Merritt.

