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Formal Methods for Crypto

● Computer-Aided Cryptography, a.k.a. High Assurance Cryptography

“Applying formal, machine-checkable approaches to the design, analysis, 
 and implementation of cryptography.”

SoK: Computer-Aided Cryptography, IEEE S&P 2021
Barbosa, Barthe, Bhargavan, Blanchet, Cremers, Liao, Parno

● Analyze cryptographic designs early to find attacks or uncover assumptions
● Comprehensively analyze specifications and standards before publication
● Formally verify efficient implementations to prevent bugs and side-channels
● …. and repeat these steps over and over again as these artifacts evolve



Formally Verifying TLS 1.3



TLS 1.3: Path to standardization

Draft 5   [Dowling, Fischlin, Günther, Stebila, 2015]

Draft 7   [Jager, Schwenk, Somorowsky, 2015]

Draft 9   [Krawczyk, Wee, 2016]

Draft 10 [Li, Xu, Zhang, Feng, Hu, 2016] 
   [Fischlin, Günther, Schmidt, Warinschi, 2016]

[Cremers, Horvat, Scott, van der Merwe, 2016]

Draft 12 [Bhargavan, Brzuska, Fournet, Green, Kohlweiss, Beguelin, 2016]

Draft 14 [Fischlin, Günther, 2017]

Draft 18 [Bhargavan, Delignat-Lavaud, Fournet, Kohlweiss, Pan, Protzenko,
 Rastogi, Swamy, Zanella-Béguelin, Zinzindohoué, 2017]
[Bhargavan, Blanchet, Kobeissi, 2017]

Draft 21 [Cremers, Horvat, Hoyland, Scott, van der Merwe, 2017]

2014

2018



TLS 1.3: Lessons and Impact

● Strong collaboration between WG and researchers
○ Many pen-and-paper proofs
○ Some machine-checked proofs in

Tamarin, ProVerif, CryptoVerif, F*

○ Proofs now often required for new protocols

● IETF Working Groups
○ LAKE: Key exchange protocol for IoT
○ TLS: Encrypted Client Hello, KEM-TLS
○ MLS: Secure group messaging

● Industrial Protocols
○ PQ3 (iMessage), PQXDH (Signal),

PQConnect (talk yesterday)



TLS 1.3+ECH: Improving privacy for TLS 1.3

● Stephen Farrell’s talk today

● TLS 1.3 encrypts most handshake , 
message, but sends server name 
in the clear in the first message

● ECH privacy extension aims to fix this
○ many early proposals were broken

● Can we prove privacy for TLS+ECH?
○ Does ECH preserve TLS 1.3 security?
○ Yes! Formally verified with ProVerif

[Cheval, Bhargavan, Wood, ACM CCS 2022]



Verifying TLS 1.3 Implementations

● Many verified protocol components for TLS available today
○ Crypto libraries in C and asm: HACL*, Fiat-Crypto (more later)
○ Verified parsers for TLS, X.509 in C: EverParse, Comparse
○ Verified TLS and QUIC record layers: miTLS, EverQuic

  

● Too much effort to scale to all of OpenSSL
○ Each component needs many PhD student-years
○ 90% of time spent on proving memory safety for C and asm
○ Successful projects generate C (or assembly) from 

proof-oriented domain-specific languages
○ Can we verify a full TLS implementation in a mainstream language?

Project Everest: Perspectives from Developing Industrial-grade High-Assurance Software May, 2025.

https://project-everest.github.io/assets/everest-perspectives-2025.pdf


BERT13: Verified PQ-TLS 1.3 in Rust

Formal Security and Functional Verification of Cryptographic Protocol Implementations in Rust. 
ACM CCS 2025. Bhargavan, Hansen, Kiefer, Schneider-Bensch, Spitters. 

https://eprint.iacr.org/2025/980


Verifying Cryptographic Libraries



VERIFIED
CRYPTO

LIBRARIES

Vale

x86_64
AEAD, Hash,
Field Arith

HACL*

Portable C
EC, AEAD, DH, 
Hash, Sig, PQC libjade

x86_64
AEAD, Hash,
EC, PQC

FiatC, Rust, Go
Field Arith

AUCurves
Rust 
EC, BLS

Cryptol/SAW

C, Java
EC, AEAD, 
Hash, PQC

CryptoLine
C, asm
Field Arith

EasyCrypt
F*

Coq SAT/SMT

+ AWS-LC
s2n-bignum

+ MS symcrypt



Verified
Cryptography
Workflow



In English + 
Pseudocode

IETF RFC or
NIST Standard

+ Test Vectors



F* Spec
(HACL*)

EasyCrypt Spec
(libjade)



F* or Coq or
EasyCrypt…

Potential Implementation Bug
● Memory Safety Violation
● Functional Correctness Flaw
● Side Channel Vulnerability

Deploy Code Fix and re-verify

Verified
Cryptography
Workflow



Good news: For any modern crypto algorithm,
there is probably a verified implementation 

● You don’t have to sacrifice performance
● Mechanized proofs that you can run and re-run yourself
● You (mostly) don’t have to read or understand the proofs
● Formally verified crypto in NSS, BoringSSL, aws-lc, …



HACL* and EverCrypt [2017-2024]

Verified crypto library
● Multiple TLS 1.3 ciphersuites
● Fast C and assembly
● Deployed in NSS, WireGuard, 

Python, …
● Proofs run on CI

Major verification effort

● 3 researchers, 4 Phds
● Code in proof-oriented F*
● Compiled to C, asm, Rust

● Too hard to verify C and 
multi-platform asm code 
written by crypto engineers 
like in OpenSSL



Verifying Post-Quantum Crypto in Rust



18



hax: linking Rust code with proof backends
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Verifying crypto code
written in Rust and C
using hax and F* FIPS 203



Writing Crypto Code in Rust

21

Barrett Reduction: computes input % 3329
(in constant time, so cannot directly use modulus)
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Potential Panics in Rust Code

These arithmetic operations may overflow or underflow
causing the code to panic at run-time



Expected behaviour: result % 3329 ≈ input % 3329
    && -3329 < result < 3329 

23

Proving Panic Freedom and Correctness in F*



Enforcing Secret Independence

Type-based static analysis of forbidden operations

● arithmetic operations with input-dependent timing 
(e.g. division) over secret integers

● comparison over secret values

● branching over secret values

● array or vector accesses at secret indices

Prevents timing bugs at Rust source level.

Does not prevent compiler-induced leaks, micro-architectural attacks, ….
24



KyberSlash: a new timing vulnerability

25

Bug present in 
PQ-Crystals, 
PQ-Clean, …

Bug found during 
Formal Verification 
of our Rust code!

KyberSlash: Exploiting secret-dependent division timings in Kyber implementations. CHES 2025. 
Bernstein, Bhargavan, Bhasin, Chattopadhyay, Chia, Kannwischer, Kiefer, Paiva, Ravi, Tamvada. 

https://eprint.iacr.org/2024/1049


Libcrux has an optimized, portable, 
formally verified implementation of 
ML-KEM and ML-DSA in Rust and C. 
Our ML-KEM code is now deployed in 
Firefox, OpenSSH, Signal, …



Analyzing Post-Quantum Protocols



The (Classical) Signal Protocol

Two parts:

● X3DH handshake
● Double Ratchet for

continuous key agreement

Important security guarantees:

● Mutual authentication
● Post-compromise security
● Forward secrecy
● Deniability

Double RatchetX3DH

SK = KDF(DH1 || DH2 || DH3 || DH4) 

DH1 DH2

DH3

DH4



PQXDH Design: Add a PQ-KEM to X3DH

IKA IKB

EKA {SPKB}

OPKB

{PQPKB}(SS, CTKEM)

DH1 DH2

DH3

DH4

SK = KDF(DH1॥ DH2॥ DH3॥ DH4॥ SS)



Analyzing PQXDH

● PQXDH is a very small addition to X3DH.
● X3DH has been comprehensively analyzed in a variety of security models

○ Mutual Authentication, Confidentiality, (a form of) Forward Secrecy

● Is PQXDH as secure as X3DH? 
● Is it secure against a Harvest-Now-Decrypt-Later quantum adversary?



Our Formal Verification Methodology



Our Formal Verification Methodology



Our Formal Verification Methodology



Formally Specifying PQXDH

Single Message between Two Roles

● Arbitrary number of endpoints
● Any endpoint can play any role
● (Out-of-Band) Identity Key Verification
● Untrusted Key Distribution Server

Specification in Applied Pi Calculus

● Makes all computations precise.
● What is sent on the wire?
● What key encoding do we use?
● What exactly is signed/encrypted?
● How are all the keys derived?



Symbolic Analysis with ProVerif

Security goals as queries

● Secrecy, Authentication as trace properties 
about protocol events & attacker knowledge

● Indistinguishability, privacy stated as 
equivalence properties between processes

Fully automated analysis

● Finds attacks and produces traces
● If no attack found in model, 

establishes a symbolic security theorem
● Might not terminate!

(* Post-Quantum Forward Secrecy Query *)
query A, B, spk, pqpk, sk, i, j;

event(BlakeDone(A,B,spk,pqpk,sk))@i
⇒ not(attacker(sk))
    | (event(LongTermComp(A))@j & j < i)
    | (event(QuantumComp)@j & j < i)

Attack Trace:

1. Using the function info_x25519_sha512_kyber1024 the attacker may obtain 
info_x25519_sha512_kyber1024.
attacker(info_x25519_sha512_kyber1024).

2. Using the function zeroes_sha512 the attacker may obtain zeroes_sha512.
attacker(zeroes_sha512).

3. We assume as hypothesis that
attacker(a).

4. We assume as hypothesis that
attacker(b).

5. The message b that the attacker may have by 4 may be received at input {2}.
So the entry identity_pubkeys(b,SMUL(IK_s_2,G)) may be inserted in a table at insert {6}.
table(identity_pubkeys(b,SMUL(IK_s_2,G))).
 …

20. By 19, the attacker may know penc(SMUL(SPKB_s_3,G),ss_1).
Using the function weakECasKEM the attacker may obtain ss_1.
attacker(ss_1).

… 

And so on



Game-Based Proofs with CryptoVerif

Computational crypto model

● Standard cryptographic assumptions
● User-defined assumptions as equivalences
● Probabilistic polynomial-time adversary

Process, security query syntax like ProVerif

● Secrecy, authentication, indistinguishability

Proofs as a sequence of game transformations

● Requires some manual guidance
● Machine-checked transformations
● Computes concrete advantage formulas
● Proof failure may indicate attack, no trace



Modeling the Quantum Adversary

Passive Quantum Adversary Model (Harvest-Now-Decrypt-Later)

● We allow adversary to break certain crypto primitives (e.g. DH)
after the session is over

● PQ primitives (e.g. PQ-KEM) remain secure

Symbolic and Computational Analysis

● ProVerif automatically searches for attacks
that rely on broken primitives

● CryptoVerif checks that the classical game-based proof
still holds against passive quantum attackers
○ Post-quantum sound CryptoVerif and verification of hybrid TLS and SSH 

key-exchanges, Blanchet, Jacomme, IEEE CSF 2024



Key Confusion Attack on PQXDH

IKA IKB

EKA {SPKB}

OPKB

{PQPKB}(SS, CTKEM)

DH1 DH2

DH3

DH4

SK = KDF(DH1॥ DH2॥ DH3॥ DH4॥ SS)

Attacker swaps keys and signatures
to break PQ security of PQXDH

ProVerif finds this attack if:
● the key encodings can collide, and
● public keys are not validated 



This is representative of a general class of cross-protocol 
attacks between classical modes and post-quantum crypto 
modes in the same protocol.

Easy Fix: Ensure all key/message/signature 
     encodings have disjoint co-domains.

Signal implementation already does this



KEM Re-encapsulation Vulnerability in PQXDH

1. Attacker compromises one of 
responder’s old PQ-KEM keys 

2. Attacker provides old 
PQ-KEM key to initiator

3. Initiator encapsulates
SS to (compromised) old key

4. Attacker re-encapsulates 
SS to responder’s new key

5. Responder thinks initiator 
used new PQ public key  

Breaks agreement query 
(non-matching transcripts)



The findings and discussions with Signal team led to a new revision of the protocol:

● We required AEAD to be post-quantum IND-CPA and INT-CTXT
● Restricted the ranges of encodings to be disjoint
● Added PQPKB to AD when it isn’t already bound within the KEM

PQXDH Revision and Security Theorems

With these changes we can prove that PQXDH meets its 
classical and PQ security requirements in the 
symbolic, computational, and HNDL quantum models.

This whole process: spec, analysis, fix, proof, new spec took 1 calendar month.



New PQ ratcheting protocol (SPQR)

● Uses chunked messages
● Requires a new streaming API 

for ML-KEM

Formally verified protocol design

● Symbolic analysis with ProVerif
● Dozen variants analyzed 

Formal verification for protocol code

● Libcrux implementation of ML-KEM
● Proofs of panic-freedom and 

correctness using hax under CI

Formal Analysis for the
Full PQ Signal Protocol



BERT13: Verified PQ-TLS 1.3 in Rust



hax: bridging the gap between code and proof



Verifying BERT13 with hax



Verifying BERT13 using hax

● We use the Rust type system to enforce state machine invariants
● We use libcrux for verified cryptography
● We use F* for properties like parsing correctness and panic-freedom
● We use ProVerif to prove protocol security for the TLS 1.3 implementation
● We use SSProve to cryptographically verify the key schedule implementation

Formal Security and Functional Verification of Cryptographic Protocol Implementations in Rust. 
ACM CCS 2025. Bhargavan, Hansen, Kiefer, Schneider-Bensch, Spitters. 

https://eprint.iacr.org/2025/980


Conclusion

Fast, verified crypto is available and already widely deployed

○ See NSS, BoringSSL, AWS-LC, MS Symcrypt, …
○ Verifying legacy C and asm is hard, generating them from DSLs is easier
○ Verifying developer-friendly Rust code offers a sweet spot

Transitioning to post-quantum protocols requires new formal analysis

○ More than just switching the crypto to ML-KEM
○ Beware of downgrade and cross-protocol attacks

Verifying protocol code can find and prevent large classes of bugs

○ Needs formal tools that protocol developers can use themselves
○ New Rust-based verification frameworks are becoming practical to use



Questions?

● Papers: https://cryspen.com/research/ 
● Code:

○ Hax: https://github.com/cryspen/hax 
○ Libcrux: https://github.com/cryspen/libcrux 
○ Bertie: https://github.com/cryspen/bertie 

https://cryspen.com/research/
https://github.com/cryspen/hax
https://github.com/cryspen/libcrux
https://github.com/cryspen/bertie

