High Assurance
Post Quantum Cryptography

Karthikeyan Bhargavan

Joint work with many others at Cryspen, Inria, Signal, ...

OpenSSL Conference, 2025 C/R% P,E N/

Formal Methods for Crypto

e Computer-Aided Cryptography, a.k.a. High Assurance Cryptography

“Applying formal, machine-checkable approaches to the design, analysis,
and implementation of cryptography.”
SoK: Computer-Aided Cryptography, IEEE S&P 2021
Barbosa, Barthe, Bhargavan, Blanchet, Cremers, Liao, Parno

Analyze cryptographic designs early to find attacks or uncover assumptions
Comprehensively analyze specifications and standards before publication
Formally verify efficient implementations to prevent bugs and side-channels
.... and repeat these steps over and over again as these artifacts evolve

Formally Verifying TLS 1.3

Long-term Keys: (skc, pk¢) Long-term Keys: (sks, pks)

TLS 1.3: Path to standardization

RetryRequest(G’)

Generates y and computes:
es = kdfy

ClientHello(ng, offers(G',g%'])

Generates z’ and computes:
es = kdfy

2014

Draft 5 [Dowling, Fischlin, Glnther, Stebila, 2015]

Chooses parameters:
modeg = (TLS1.3,DHE(G’), H(), enc())

Draft 7 [Jager, Schwenk, Somorowsky, 2015]

ServerHello(ng, modes(G’, g¥])

logy -+--- i ————————————————----. logy
Computes: Computes:
Draft 9 [Krawczyk, Wee, 2016] s = Kdfaa(es, 6%'%) hs = kdfy(es, ¢7'%)
ms, kP, kP, k", k™ = kdf s (hs, log,) ms, kP, kP k™ kT = kdf g (hs, logy)
Draft 10 [Li, Xu, Zhang, Feng, Hu, 2016] el)
[Fischlin, Glinther, Schmidt, Warinschi, 2016] TRR— enck:fo:f L i
logs ----- T o 2o logy
[Cremers, Horvat, Scott, van der Merwe, 2016] Jogeces enc® (Finished(mact (Hllogs))) | . Joy
’ Computes: Computes:
. . ke, ks, ems = kdf(ms, log,) ke, ks, ems = kdfi(ms, log,)
Draft 12 [Bhargavan, Brzuska, Fournet, Green, Kohlweiss, Beguelin, 2016]
_____ enck! (Certificate(pky)) 1
. . . izz: _____ enck? (::ertVerify(sigr’::‘C(H(logs)))) _____ ia;:
Draft 14 [Fischlin, Glinther, 2017] e s {Einishod(mac= (Hiloa)))) 1. log,
. . psk’ =Ckzl;:::t(:sz:s, log;) psk’ =Ckzl;:z:?ms;, log;)
Draft 18 [Bhargavan, Delignat-Lavaud, Fournet, Kohlweiss, Pan, Protzenko, cid = ems or psk’ o H(logs) &id = éima ot pok” o H(lag)
Rastogi, Swamy, Zanella-Béguelin, Zinzindohoué, 2017] Newc,ie,[tsem Nww'
. . C =CW cid — (offers, modeg, S = 8 cid — (offer, modeg,
[Bhargavan, Blanchet, Kobeissi, 2017] P, pks, P, pks,
ke, kg, ems, psk’) ke, ks, ems, psk’)
enck:(Data(m,))
Draft 21 [Cremers, Horvat, Hoyland, Scott, van der Merwe, 2017] enck- Data(ms))
Application Data Stream: Application Data Stream:
- C(ﬁ)S:ml,mg,m Ciﬂ)S:ml,mz,A..
2018 — ——

TLS 1.3: Lessons and Impact

e Strong collaboration between WG and researchers
o Many pen-and-paper proofs
o Some machine-checked proofs in
Tamarin, ProVerif, CryptoVerif, F*

O Proofs now often required for new protocols

e |ETF Working Groups
o LAKE: Key exchange protocol for loT
o TLS: Encrypted Client Hello, KEM-TLS
o MLS: Secure group messaging

e Industrial Protocols
o PQ3 (iMessage), PQXDH (Signal),
PQConnect (talk yesterday)

Long-term Keys: (skc, pkc)

ClientHello(nc, offerc[(G, g%), G'])

RetryRequest(G’)

es =

Generates z’ and computes:

kdf,

ClientHello(ng, offers(G',g%'])

Long-term Keys: (sks, pks)

Generates y and computes:
es = kdfy

modeg = (TLS1.3,

Chooses parameters:
DHE(G"), H(), enc())

ServerHello(ng, modes(G’, g¥])

log; =" logy
Computes: Computes:
hs = kdfs(es, g*'¥) hs = kdfj,(es, g%'¥)
ms, kI, kK, kI = kdf g (hs, logy) ms, kP, kP k™ kT = kdf g (hs, logy)

enck’ (Extensions(...))

enck” (CertRequest(...))

enck’ (Certificate(pkg))

logy -—---4¢—fp ————— =207 L. log
10:2 enck” (Certveri fy(sign*** (H(log,)))) ln?
g 7L T T R 3
Bggeeews enck (Finished(mack (H(logy)))) | o
Computes: utes:

ke, ks, ems = kdfy(ms, log,)

Comp
ke, ks, ems = kdfi(ms, log,)

enck! (Certificate(pky))

enc*: (Certveri fy(sign** (H(logs))))

enck: (Finished(mac* (H(logs))))

Computes:
psk’ = kdf k. (ms, log;)
cid = ems or psk’ or H(log,)

Computes:
psk’ = kdf e (ms, log;)
cid = ems or psk’ or H(log;)

New client session:
C =CW cid — (offers, modeg,
pkc, pksg,
ke, ks, ems, psk')

New server session:
S = 8 cid — (offer, modeg,
Pk, pks,
ke, ks, ems, psk')

enck:(Data(m,))

encks (Data(ms))

Application Data Stream:
C(ﬂ)S:ml,mg,“‘

—

Application Data Stream:
CE4 S myym, ...

—
e

TLS 1.3+ECH: Improving privacy for TLS 1.3

® Ste p h e n Fa r re I | ,S ta | k to d ay Yxf:r(r?:-;?';ft: :il:aft—ietf«tls-esni—zo
Published: 5 August 2024
Intended Status: Standards Track
® T LS 1 '3 e n C ry pts m OSt h a n d S h a ke ’ iﬁ?:::s ‘Ei.F::srcuoill’Z o K. Oku N. Sullivan C. A. Wood
m e S S a g e b ut S e n d S S e rV e r n a m e Independent Fastly Cryptography Consulting LLC Cloudflare
in the clear in the first message TLS Encrypted Client Hello
. | Client (€) | | Adversary (4) |
e ECH privacy extension aims to fix this *
o many early proposals were broken o105 ot o S O P P
CH(er, F, [G, g°'1, hpke F (S)[cr])
e Servertello(snGg¥) | -
e Can we prove privacy for TLS+ECH? Compes r—
hs = kdf ps (kdfo, g*'¥) hs = kdf s (kdfo, g*'¥)
O D O eS E C H p rese rve T LS 1 '3 Sec u rity? e e kdfm:::;iixtensions(. . Certificater::z};:):hm B
O YeS! Forma“y Verified With Proverif ‘LearnsthatCtriedtoconnecttoSfromCertificate(S’,pk’)‘
[Cheval, Bhargavan, Wood, ACM CCS 2022] e E—

Verifying TLS 1.3 Implementations

e Many verified protocol components for TLS available today
o Crypto libraries in C and asm: HACL", Fiat-Crypto (more later)
o Verified parsers for TLS, X.509 in C: EverParse, Comparse
o Verified TLS and QUIC record layers: miTLS, EverQuic

e Too much effort to scale to all of OpenSSL
o Each component needs many PhD student-years
o 90% of time spent on proving memory safety for C and asm
o Successful projects generate C (or assembly) from
proof-oriented domain-specific languages
o Can we verify a full TLS implementation in a mainstream language?

Project Everest: Perspectives from Developing Industrial-grade High-Assurance Software May, 2025.
D

https://project-everest.github.io/assets/everest-perspectives-2025.pdf

BERT13: Verified PQ-TLS 1.3 in Rust

o000 (ST

GitHub - cryspen/bertie: Ber! X 5

G % bertie.cryspen.com Y

& Incognito

25 github.com/cryspen/bertie Q
= Minos Crypto Prot...

& Incognito

(9 (smim) (z2]

sp payslips-working Bit Twiddling Hacks 3 All Bookmarks

Public

Bertie TLS 1.3 Implementation

&8 Apache-2.0 license

Y¥ 1M8stars % 4forks ¥ Branches

Bertie W star [\ Notifications
High Assurance PQTLS O Code O toses 20 11 Pullrequss 5) Disusins

¥ main ~ ¥ © Go to file <> Code ~

% ¥ franziskuskiefer Merge pull request #1... &8

© Tags N Activity

020fee9 - last week @

B .github Ci: use hacpsec/hax-actions 3 months ago

B assets Move logo to "assets" folder.

® Cryspen BB benches update libcrux

Formal Security and Functional Verification of Cryptographic Protocol Implementations in Rust.
ACM CCS 2025. Bhargavan, Hansen, Kiefer, Schneider-Bensch, Spitters.

3 years ago

3 months ago

https://eprint.iacr.org/2025/980

Veritying Cryptographic Libraries

Portable C

x86_64
EC, AEAD, DH —
: , DH, A AEAD, Hash,
Hash, Sig, PQC | HACL* ||bjade - EC, pQCaS
\
x86_64
AEAD, Hash, EasyCrypt
Field Arith Vale F*
VERIFIED
CRYPTO
LIBRARIES
C, Java
EEI:STBLS Coq SAT/SMT EC, AEAD,
AUCurves Hash, PQC

Cryptol/SAW

+ AWS-LC ~

s2n-bignum
+ MS symcrypt

C, asm

CryptoLine | Field Arith

[

C, Rust, Go Fiat
Field Arith

STANDARD I

v Verified

Workflow

STANDARD

|
)
[
|
[
|
v

Internet Research Task Force (IRTF) Y. Nir

Request for Comments: 8439 Dell EMC
Obsoletes: 7539 A. Langley
Category: Informational Google, Inc.
ISSN: 2070-1721 June 2018

ChaCha20 and Polyl305 for IETF Protocols

Abstract

This document defines the ChaCha20 stream ci IETF RFC or

of the Polyl305 authenticator, both as stand- NlST Standard
a "combined mode", or Authenticated Encryptio

2.1. The ChaCha Quarter Round

The basic operation of the ChaCha algorithm is the quarter round. It
operates on four 32-bit unsigned integers, denoted a, b, c, and d.
The operation is as follows (in C-like notation):

a +=b; d "= a; d <<<= 16; ;
¢ += di b "= c; b <<<= 12; In English +
a += b; d "= a; d <<<= 8;

g 4= di b "= @} b <= Ty Pseudocode

2.1.1. Test Vector for the ChaCha Quarter Round

For a test vector, we will use the same numbers as in the example,
adding something random for c.

a = 0x11111111
b = 0x01020304
c = 0xOb8dEF£43 + Test Vectors
d = 0x01234567

STANDARD

|
[
[
|
[
|
v

let line (a:idx) (b:idx) (d:idx) (s:rotval Usy) (m:state) : Tot state =

let m = m.[a] « (m.[a] +. m.[b]) in
let m = m.[d] « ((m.[d] ~. m.[a]) <<<. s) in m

let quarter_round a b ¢ d : Tot shuffle =
line a b d (size 16) @
line c d b (size 12) @

line ¢ d b (size 7) F* Spec

line a b d (size 8) @ [
l (HACL™)

]

proc chacha20_line(a : int, b : int, d : int, s : int, st : State) = {
var state;
state <- st;
state. [a]l <- ((state).[a]) + ((state).[bl);
state. [d] <- ((state).[d]) "~ ((state).[al);
state. [d] <- rotate_left ((state).[d]) (s);
return state;

}

proc chacha2@0_quarter_round(a : int, b : int, c : int, d : int, st : State) = {
var state;

state <@ chacha20_line (a, b, d, 16, st);
state <@ chacha20_line (c, d, b, 12, state);
state <@ chacha20_line (a, b, d, 8, state);
state <@ chacha2@_line (c, d, b, 7, state);
) return state; [EasyCrypt Spec
L (libjade)

)

STANDARD I

|
[
|
|
[
|
v

F*or Coq or
EasyCrypit...

Deploy Code

Verified
Cryptography
Workflow

Potential Implementation Bug
e Memory Safety Violation
e F[unctional Correctness Flaw
e Side Channel Vulnerability

|

Fix and re-verify

For any modern crypto algorithm,
there is probably a verified implementation

You don’t have to sacrifice
that you can run and re-run yourself
You (mostly) don’t have to read or understand the proofs

o
o
o
e Formally verified crypto in , : e

HACL® and EverCrypt [2017-2024]

Verified crypto library

e Multiple TLS 1.3 ciphersuites

e Fast C and assembly

e Deployed in NSS, WireGuard,
Python, ...

e Proofs run on Cli

Major verification effort

e 3researchers, 4 Phds
e Code in proof-oriented F*
e Compiledto C, asm, Rust

e Too hard to verify C and
multi-platform asm code
written by crypto engineers
like in OpenSSL

Portable | Arm A64 Intel x64
Algorithm C code Neon |AVX |AVX2 | AVX512| Vale
AEAD
Chacha20-Poly1305 vV [43]1 (+) |V (%) 4O 404G
AES-GCM v [20]
Hashes
SHA-224,256 vV [43] (+) |V (%) OO (V) v [20]
SHA-384,512 vV [43] (+) |V (%) 4O 404G
Blake2s, Blake2b vV [34] (+) |V (%))| V(O)
SHA3-224,256,384,512 | v [34]
HMAC and HKDF
HMAC (SHA-2,Blake2) | v [43] v (%) 4O 404G
HKDF (SHA-2,Blake2) | v [43] v (%) OO (VO
ECC
Curve25519 v [43] v [34]
Ed25519 v [43]
P-256 v [34]
High-level APIs
Box v [43]
HPKE v () v () OLIVE) [V O) A

Verifying Post-Quantum Crypto in Rust

FIPS 203

Federal Information Processing Standards Publication

Module-Lattice-Based

Key-Encapsulation Mechanism Standard

Category: Computer Security

Subcategory: Cryptography

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8900

This publication is available free of charge from:
https://doi.org/10.6028/NIST.FIPS.203

Published August 13, 2024

18

hax: linking Rust code with proof backends

/fgx frontend

n

rﬁﬁst Compiler
HIR =

i

Rust THIR L] JSON |[————
L J/
ax engine - Transformations AST.ml
V
Transformed
AST
ProVerif Coq F*

K@x backends

} CRYSPEN
/ A\ "4 ﬁﬁmﬁzm

lrezia —

Verifying crypto code
written in Rust and C
using hax and F*

Rust Code
(ML-KEM)

FIPS 203 0

1

Unsupported Rust, or
Secret dependent code

F* Spec F* Model F* Libraries
(ML-KEM) (ML-KEM) (Rust stdlib)

Panic Condition, or
Correctness bug

eurydice

C Code
(ML-KEM)

20

Writing Crypto Code in Rust

i L

pub(crate) fn barrett_reduce(input:
let t = ::from(input) *
let quotient = (t >>) as x
let remainder = input - (quotient *
remainder

Barrett Reduction: computes input % 3329
(in constant time, so cannot directly use modulus)

Potential Panics in Rust Code

) A

pub(crate) fn barrett_reduce(input:
let t = ::from(input) *
let quotient = (t >>) as x
let remainder = input(-)(quotient(*
remainder

These arithmetic operations may overflow or underflow
causing the code to panic at run-time

Proving Panic Freedom and Correctness in F*

; £
Q ‘ :':.;:-:-'9

val barrett_reduce (input: 132_b (v v_BARRETT_R))
: Pure (132 b)
(requires True)
(ensures fun result ->
v result % v Libcrux.Kem.Kyber.Constants.v_FIELD_MODULUS
= v 1nput %v Libcrux.Kem.Kyber.Constants.v_FIELD_MODULUS)

Expected behaviour: result % 3329 = input % 3329
&& -3329 < result < 3329

Enforcing Secret Independence

Type-based static analysis of forbidden operations

e arithmetic operations with input-dependent timing
(e.g. division) over secret integers

® comparison over secret values

e branching over secret values

® array or vector accesses at secret indices

Prevents timing bugs at Rust source level.

Does not prevent compiler-induced leaks, micro-architectural attacks,

24
e

KyberSlash: a new timing vulnerability

void poly_tomsg(uint8_t msg[KYBER_INDCPA_MSGBYTES], const poly *a)

{

unsigned int i,j;

uintle_t t;

for(i=0; i<KYBER_N/8;i++) {
msgl[i] = 0;

Bug presentin
PQ-Crystals,
PQ-Clean, ...

for(j=0;j<8;j++) {
t = a—>coeffs[8xi+jl;
t += ((int16_t)t >> 15) & KYBER_Q;
t = (((t << 1) + KYBER_Q/2)/KYBER_Q) & 1;
msgli]l |= t << j;

}

¥

KyberSlash: Exploiting secret-dependent division timings in Kyber implementations. CHES 2025.
Bernstein, Bhargavan, Bhasin, Chattopadhyay, Chia, Kannwischer, Kiefer, Paiva, Ravi, Tamvada.

https://eprint.iacr.org/2024/1049

Libcrux has an optimized, portable,
formally verified implementation of
ML-KEM and ML-DSA in Rust and C.
Our ML-KEM code is now deployed in
Firefox, OpenSSH, Signal, ...

© crysp

libcrux - the formally verified
crypto library

Analyzing Post-Quantum Protocols

The (Classical) Signal Protocol

Two parts:

e X3DH handshake
e Double Ratchet for
continuous key agreement

Important security guarantees:

Mutual authentication
Post-compromise security
Forward secrecy
Deniability

SK = KDF(DH1 || DH2 || DH3 || DH4)

PQXDH Design: Add a PQ-KEM to X3DH

(SS, CT

SK =KD

DH DH
1 2 I KB Initiator Responder
g signy, (g7 sien, (k)| |
DH
TN - {SPK } (gekAadh4) A X3dhi(ikA7gikB7gopkB7gspkB)
S~ - B (ss,ct) <— encap(pgpkp) |
~o \DH4 K = kdf(dh4||ss)
~ ~ -
"~ OPK, g% fer|acad (K msgo)ika iks]
dh4 «— x3dh,(ikg,opkg, spkg, g™+, g#4)
) - {PQPK } ss «— decap(pgskg, ct)
KEM B _
K = kdf(dh4||ss)

F(DH, Il DH, Il DH, Il DH, Il SS)

Analyzing PQXDH

PQXDH is a very small addition to X3DH.

X3DH has been comprehensively analyzed in a variety of security models
o Mutual Authentication, Confidentiality, (a form of) Forward Secrecy

Is PQXDH as secure as X3DH?
Is it secure against a Harvest-Now-Decrypt-Later quantum adversary?

Our Formal Verification Methodology

Protocol
Specification
Formal Specification :

v
Compromise Security Protocol ||Cryptographic
Model Goals Model Assumptions

Our Formal Verification Methodology

FIX
Protocol
s e wmnd PR e n S Specification

Formal Specification

Compromise Security Protocol Cryptographic
Model Goals Model Assumptions

l

Potential
Protocol
Flaw

ATTACK PROVERIF

PROVED

Symbolic
Security
Theorem

Our Formal Verification Methodology

FIX
Protocol [..
Specification o
Formal Specification

v :
Compromise Security Protocol ||Cryptographic|) «. FINE 5
Model Goals Model Assumptions T

Potential
Cryptographic
Weakness

CRYPTO FAILURE

VERIF

PROVED

Cryptographic
Security
Theorem

Formally Specifying PQXDH

Single Message between Two Roles

e Arbitrary number of endpoints
e Any endpoint can play any role

e (Out-of-Band) Identity Key Verification
e Untrusted Key Distribution Server

Specification in Applied Pi Calculus

Makes all computations precise.
What is sent on the wire?

What key encoding do we use?
What exactly is signed/encrypted?
How are all the keys derived?

let Initiator(i:client, IKA_s:scalar) =
(* Download Responder Keys)

(x Verify the signatures x)
if verify(IKB_p,encodeEC(SPKB_p),SPKB_sig) then
if verify(IKB_p,encodeKEM(PQPKB_p),PQPKB_sig) then

(*x PQXDH Key Derivationx)

let IKA_p = s2p(IKA_s) in

let (CT:bitstring,SS:bitstring) =
pgkem_enc(PQPKB_p) in (x PQ-KEM Encap x*)

new EKA_s:scalar;

let EKA_p = s2p(EKA_s) in

let DH1 = dh(IKA_s,SPKB_p) in
let DH2 = dh(EKA_s,IKB_p) in
let DH3 = dh(EKA_s,SPKB_p) in
let DH4 = dh(EKA_s,OPKB_p) in

let SK = kdf(concat5(DH1,DH2,DH3,DH4,SS)) in

(* Send Message x)

let ad = concatIK(IKA_p,IKB_p) in

new msg_nonce: bitstring;

let msg = app_message(i,r,msg_nonce) in

let enc_msg = aead_enc(SK,empty_nonce,msg,ad) in

out(server, (IKA_p,EKA_p,CT,O0PKB_p,
SPKB_p, PQPKB_p,enc_msg))

Symbolic Analysis with ProVerit

(* Post-Quantum Forward Secrecy Query *)
A, B, spk, papk, sk, i, j;
(BlakeDone(A,B,spk,pqpk,sk))@i

Security goals as queries

e Secrecy, Authentication as trace properties = not(attacker(sk)) o
about protocol events & attacker knowledge Eg%l%{ﬁ:;“cioﬁp‘;gj»gjfi; =

e Indistinguishability, privacy stated as
equivalence properties between processes Attack Trace:

1. Using the function info_x25519_sha512_kyber1024 the attacker may obtain
info_x25519_sha512_kyber1024.
attacker(info_x25519_sha512_kyber1024).

Fully automated analysis

2. Using the function zeroes_sha512 the attacker may obtain zeroes_sha512.
attacker(zeroes_sha512).

Finds attacks and produces traces _
. 3. We assume as hypothesis that
If no attack found in model, attacker(a).
establishes a symbolic security theorem 4 We aesume as hypothesis that
attacker(p).
e Might not terminate!

5. The message b that the attacker may have by 4 may be received at input {2}.
So the entry identity_pubkeys(b,SMUL(IK_s_2,G)) may be inserted in a table at i
table(identity_pubkeys(b,SMUL(IK_s_2,G))).

Game-Based Proofs with CryptoVerif

Computational crypto model

e Standard cryptographic assumptions
e User-defined assumptions as equivalences
e Probabilistic polynomial-time adversary

Process, security query syntax like ProVerif
® Secrecy, authentication, indistinguishability
Proofs as a sequence of game transformations

Requires some manual guidance
Machine-checked transformations
Computes concrete advantage formulas

o
[
o
e Proof failure may indicate attack, no trace

proof {
crypto uf_cma_corrupt(sign) signAseed;
out_game '"gl.cv" occ;

insert before "EKSecAl <-R Z" ...
insert after "RecvOPK(" ...
out_game '"gll.cv" occ;

insert after "OH_1(" ...
crypto rom(H2);
out_game '"g2.cv" occ;

insert before "EKSecAlp <-R Z" ...
insert after "RecvNoOPK(" ...
out_game ''gl2.cv'"occ;

insert after "OH(" ...
crypto rom(H1);
out_game '"g3.cv";

crypto gdh(gexp_div_8) ...
crypto int_ctxt(enc) s;
crypto ind_cpa(enc) sx;
out_game '"g4.cv";

crypto int_ctxt_corrupt(enc) r_23;
crypto int_ctxt_corrupt(enc) r_50;
success

¥

Modeling the Quantum Adversary

Passive Quantum Adversary Model (Harvest-Now-Decrypt-Later)

e We allow adversary to break certain crypto primitives (e.g. DH)
after the session is over
e PQ primitives (e.g. PQ-KEM) remain secure

Symbolic and Computational Analysis

e ProVerif automatically searches for attacks
that rely on broken primitives
e CryptoVerif checks that the classical game-based proof

still holds against passive quantum attackers
o Post-quantum sound CryptoVerif and verification of hybrid TLS and SSH

key-exchanges, Blanchet, Jacomme, IEEE CSF 2024
T

Key Confusion Attack on PQXDH

DH DH
IKA 1 2 IKB

DH,
EK, < {SPK_}
“~. DH,
RN - OPK Attacker swaps keys and signatures
B to break PQ security of PQXDH
(SS, CT,) ™ {PQPK_} ProVerif finds this attack if:

e the key encodings can collide, and
e public keys are not validated

SK = KDF(DH, Il DH, Il DH, Il DH, || SS)

This is representative of a general class of cross-protocol
attacks between classical modes and post-quantum crypto
modes in the same protocol.

Easy Fix: Ensure all key/message/signature
encodings have disjoint co-domains.

Signal implementation already does this

KEM Re-encapsulation Vulnerability in PQXDH

paskp pasky
1. Attacker compromises one of Initiator Attacker R pouuer

responder’s old PQ-KEM keys
2. Attacker provides old
. og e (gekA1dh4)(_X3dhi(ikA?gikB’gopkB?gspkB)
PQ-KEM key to initiator (ss,ct) <— encap(pgpk$)
L K = kdf(dh4||ss)
3. Initiator encapsulates

3 g°rks sign, (g*s),signy (papky) y g°rks signy, (g7*s), signy. . (pqpky)

SS to (compromised) old key g™ ct, acad (K, msgo) ik k]
4. Attacker re-encapsulates ss — decap(pqsk§, ct)
, ct’ «— re_encap(pqpk,ss)
SS to responder’s new key :
5. Responder thinks initiator g™, cf acad (K, msgo) ikl ks
used new PQ public key dhd «— x3dh, (ikg, opkg, spkg, g4, g?*4)

ss «— decap(pgskg, ct)
K = kdf(dh4]|ss)

Breaks agreement query
(non-matching transcripts) —— — ;

PQXDH Revision and Security Theorems

The findings and discussions with Signal team led to a new revision of the protocol:

e We required AEAD to be post-quantum IND-CPA and INT-CTXT
e Restricted the ranges of encodings to be disjoint

e Added PQPK; to AD when it isn’t already bound within the KEM

With these changes we can prove that PQXDH meets its
classical and PQ security requirements in the
symbolic, computational, and HNDL quantum models.

This whole process: spec, analysis, fix, proof, new spec took 1 calendar month.

Formal Analysis for the
Full PQ Signal Protocol

New PQ ratcheting protocol (SPQR)

e Uses chunked messages
® Requires a new streaming API
for ML-KEM

Formally verified protocol design

e Symbolic analysis with ProVerif
e Dozen variants analyzed

Formal verification for protocol code

e Libcrux implementation of ML-KEM
e Proofs of panic-freedom and
correctness using hax under Cli

O

Signal Protocol and Post-Quantum
Ratchets

Graeme Connell and Rolfe Schmidt on 02 Oct 2025

BERT13: Verified PQ-TLS 1.3 in Rust

o000 @ Bertie

& (¢} 25 bertie.cryspen.com Yo & Incognito

= Minos Crypto Prot... sp payslips-working

Bit Twiddling Hacks 3 All Bookmarks

Bertie
High Assurance PQ TLS

Learn more

© Cryspen

GitHub - cryspen/bertie: Ber! X cE

G

25 github.com/cryspen/bertie

(@)

Public

Bertie TLS 1.3 Implementation

&5 Apa -2.0 license

Y 1M8stars % 4forks ¥ ches

77 Star

<> Code () Issues 29 i1 Pullrequests 5

¥ main ~ ¥ &

£ franziskuskiefer Merge pull reques

B .github

ci: use hacpsec/h

B assets

B8 benches update libcrux

Move logo to "asse

QY & Incognito

(gonm) (2]

© Tags A~ Activity

) Discussions

Go to file <> Code ~

last v @

x-actions 3 months ago

ts" folder. 3 years ago

3 months ago

hax: bridging the gap between code and proof

/ﬁ;x frontend \

(ﬁst Compiler W

HIR ~,| THIR MIR JSON |——
Rust L\‘ = <l)
. //

ax engine

Transformations

AST.ml
V
Transformed
AST
/
ProVerif Coq F*

K@x backends j}

Verifying BERT13 with hax

S e B e

Extract
""""" ‘L'"""}""""L"‘\
I
nd SProve ProVerif :
---------- i - i t Y
orm) Authenticity,
verified NS Secure key schedul confidentiality, - an:t::tmct
roperti g correctness nd PQ security mpleme

- e - e e - e e - e o - - - — —

Verifying BERT13 using hax

e We use the Rust type system to enforce state machine invariants

e We use libcrux for verified cryptography

e We use F* for properties like parsing correctness and panic-freedom

e We use ProVerif to prove protocol security for the TLS 1.3 implementation

e We use SSProve to cryptographically verify the key schedule implementation

Table 2: Formal Verification Results for Bert13
Backend Prover Rust Modules Rust LoC Translated LoC Properties Proven Time Taken for Proofs (s)
SSProve 1 425 815 Core Key Schedule Security 11m17s
ProVerif 3 1723 5980 Forward Secrecy, Authentication 20s
HNDL Post-Quantum Security

Fx 8 3264 10964 Runtime Safety, Unambiguous Formats 1m21s

Formal Security and Functional Verification of Cryptographic Protocol Implementations in Rust.
ACM CCS 2025. Bhargavan, Hansen, Kiefer, Schneider-Bensch, Spitters.

https://eprint.iacr.org/2025/980

Conclusion

Fast, verified crypto is available and already widely deployed

o See NSS, BoringSSL, AWS-LC, MS Symcrypt, ...
o Verifying legacy C and asm is hard, generating them from DSLs is easier
o Verifying developer-friendly Rust code offers a sweet spot

Transitioning to post-quantum protocols requires new formal analysis

o More than just switching the crypto to ML-KEM
o Beware of downgrade and cross-protocol attacks

Verifying protocol code can find and prevent large classes of bugs

o Needs formal tools that protocol developers can use themselves
o New Rust-based verification frameworks are becoming practical to use

Questions?

e Papers: https://cryspen.com/research/

e Code:
o Hax: https://github.com/cryspen/hax
o Libcrux: https://github.com/cryspen/libcrux
o Bertie: https://qgithub.com/cryspen/bertie

https://cryspen.com/research/
https://github.com/cryspen/hax
https://github.com/cryspen/libcrux
https://github.com/cryspen/bertie

