
Version number here V00000

and Vice Versa

Taking OpenSSL into
PKCS #11 World

Jakub Jelen

Principal Software Engineer

1



Version number here V00000

2

Jakub Jelen
● Principal Software Engineer, Red Hat
● OpenSC developer and maintainer

○ Open source smart card tools and middleware
● Contributed and improved PKCS #11 support in different 

projects
○ OpenSSH, libssh, curl, p11-kit, rust-cryptoki, clevis, GnuTLS, 

…
● PKCS #11 provider and kryoptic developer

○ Disclaimer: Most of the work done by Simo Sorce

Source:
https://github.com/OpenSC/OpenSC

https://github.com/OpenSC/OpenSC


Version number here V00000

Agenda

3

▸ PKCS #11

▸ What’s new in PKCS #11 3.2

▸ OpenSSL and PKCS #11

▸ pkcs11-provider

▸ kryoptic



Version number here V00000

4

PKCS #11
Cryptographic token 

interface



Version number here V00000

PKCS #11: Cryptographic token interface

Hardware Security Modules and Smart cards

Security: Segregation of cryptographic material

Store Cryptographic information

Execute cryptographic operations

Object-based approach

Technology independence

C API5

Cryptoki [crypto key]

PKCS #11: Cryptographic token interface



Version number here V00000

Vocabulary

▸ Module – software implementing PKCS #11 API

･ GetFunctionList, GetInterfaceList, GetInterface

▸ Slot + Token: Logical or physical (smart cards)

･ Provide mechanisms and objects, authentication

▸ Objects: provide attributes: Keys, Certificates, Data …

▸ Operations:

･ Take Objects, Mechanism and Parameters

･ Result in data or other objects6

PKCS #11: Cryptographic token interface

Module: <opensc-pkcs11.so>

Slot: <Card Reader 1>

Token: <Smart Card 2>

Object: <Public Key 1>

Object: <Private Key 1>

Attr <Key type: CKK_RSA>
Attr <Object class: Public>
…

Attr <Key type: CKK_RSA>
Attr <Object class: Private>
…

Session

Mechanism

Function List

Object: <Secret Key 1>

Attr <Key type: CKK_AES>
Attr <Object class: Secret>
…



Version number here V00000

7

What’s new in
PKCS #11 3.2



Version number here V00000

What’s new in PKCS #11 3.2

8

Source:
https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.2/csd01/pkcs11-spec-v3.2-csd01.html

▸ PQC objects:

･ ML-KEM, ML-DSA, SLH-DSA

▸ PQC Mechanisms

▸ New API to support PQC operations

･ C_EncapsulateKey(), C_DecapsulateKey()

･ C_VerifySignature*()

Post-Quantum Cryptography

https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.2/csd01/pkcs11-spec-v3.2-csd01.html


Version number here V00000

What’s new in PKCS #11 3.2

9

Source:
https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.2/csd01/pkcs11-spec-v3.2-csd01.html

▸ Propagation of FIPS validation of HW to user

▸ Token validation information

･ CKO_VALIDATION object class

▸ Object validation flags

･ CKA_OBJECT_VALIDATION flag

▸ Operation validation status (= FIPS Service Indicators)

･ C_GetSessionValidationFlags()

FIPS service indicators

Validation API

https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.2/csd01/pkcs11-spec-v3.2-csd01.html


Version number here V00000

What’s new in PKCS #11 3.2

10

Source:
https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.2/csd01/pkcs11-spec-v3.2-csd01.html

▸ New object class: CKO_TRUST

･ Maps to existing certificate object

▸ Different levels of trust/distrust

▸ For different usage (client, server, code signing, mail, ipsec …)

▸ Who likes dealing OpenSSL’s CA bundles?

Fine grained trust store

Trust objects

https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.2/csd01/pkcs11-spec-v3.2-csd01.html


Version number here V00000

PKCS #11: Cryptographic token interface

11

▸ Follow the best practices

▸ Different implementations have different bugs

▸ A lot of boilerplate needed

･ Initialization, Slot/Token enumeration, Session management, 

Object enumeration, management and conversion, locking, 

synchronization 

▸ -> Use OpenSSL pkcs11-provider 

How to use PKCS #11



Version number here V00000

12

PKCS #11 and OpenSSL
Comparison

Relationship

History



Version number here V00000

PKCS #11 and OpenSSL

13

▸ C-API: simple Low-Level x C-API: rich High Level

▸ Stable, backward compatible x Evolving

▸ Slot/Token centric x Object centric

▸ Object Attributes x Object OSSL_PARAMs

▸ Many implementations x Many users

▸ Custom implementations x Engines/Providers

PKCS #11 x OpenSSL 3.x

Comparison



Version number here V00000

PKCS #11 and OpenSSL

14

▸ Familiar high-level OpenSSL API

▸ Vendors implementing standard  PKCS #11 API for HW

▸ Developers interested in protecting private keys

▸ Security through separation

･ Break through OpenSSL API: possible

･ Break through OpenSSL, Providers and PKCS #11: ?

･ PKCS#11 is designed to prevent export of private key material

The use case

PKCS #11 + OpenSSL



Version number here V00000

PKCS #11 and OpenSSL

15

▸ engine_pkcs11 since 2005 (merged into libp11 in 2016)

･ Cumbersome, poor testing and architecture

･ Using engine specific API to load objects

▸ pks11-provider since 2022

･ Transparent usage with STORE API and PKCS #11 URI

･ SKEY API (Dmitry Belyavskiy later today)

･ PQC mechanisms

History

Source:
https://github.com/OpenSC/libp11
https://github.com/latchset/pkcs11-provider 

https://github.com/OpenSC/libp11
https://github.com/latchset/pkcs11-provider


Version number here V00000

16

pkcs11-provider
 A PKCS #11 provider for 

OpenSSL 3.0+ 



Version number here V00000

pkcs11-provider

17

Source:
https://github.com/latchset/pkcs11-provider 

▸ Allow applications using OpenSSL to access cryptographic keys and 

operations on them

▸ Registers pkcs11: URI (RFC 7512) scheme in OpenSSL store

･ Avoids the PKCS#11 token centric approach

･ Returns familiar EVP_PKEY objects

･ The rest of operations same

▸ Until the user/malware tries to access/export private key material

･ Pkcs11 provider nor the pkcs11 module have access to that!

OpenSSL pkcs11-provider

https://github.com/latchset/pkcs11-provider


Version number here V00000

pkcs11-provider

18

Source:
https://github.com/latchset/pkcs11-provider/blob/main/docs/provider-pkcs11.7.md

▸ Provider API was undocumented, full of tables

･ Many macros, auto-generated code

▸ PKCS#11 API requires a lot of boilerplate

･ Generated code

▸ Recursion: pkcs11 provider in openssl.cnf

･ What if the pkcs11 module is using OpenSSL?

･ SoftHSM crashed or deadlocked because of poor use of 

libctx

Interfaces

Challenges

https://github.com/latchset/pkcs11-provider/blob/main/docs/provider-pkcs11.7.md#pkcs11-module-load-behavior


Version number here V00000

pkcs11-provider

19

Source:
https://github.com/latchset/pkcs11-provider/blob/main/docs/provider-pkcs11.7.md

▸ PKCS#11 initialization is expensive – talks to HW

▸ What mechanisms we provide when OpenSSL asks?

･ Delay for the first use

▸ Configuration option pkcs11-module-load-behavior = early

Early/late initialization

Challenges

https://github.com/latchset/pkcs11-provider/blob/main/docs/provider-pkcs11.7.md#pkcs11-module-load-behavior


Version number here V00000

pkcs11-provider

20

Source:
https://github.com/latchset/pkcs11-provider/blob/main/docs/provider-pkcs11.7.md

▸ Software has bugs

▸ Blocklist functionality with configuration

･ pkcs11-module-quirks = no-operation-state

･ Get/SetOperationState unusable

▸ Block class of operations

･ pkcs11-module-block-operations = digest, decoder …

▸ Prevent PIN locking by repeated attempts

･ Cache PIN digest

PKCS #11 implementation bugs

Challenges

https://github.com/latchset/pkcs11-provider/blob/main/docs/provider-pkcs11.7.md#pkcs11-module-load-behavior


Version number here V00000

pkcs11-provider

21

▸ The PKCS #11 3.2 specification: almost 500 pages!

▸ Implementations have bugs

･ All, tokens, pkcs11-provider and OpenSSL

▸ CI with 3 different software tokens

▸ Integration tests with different applications: httpd, bind, libssh

▸ Test coverage for all new algorithms

▸ Part of OpenSSL CI (external tests)

Testing pkcs11-provider



Version number here V00000

pkcs11-provider

22

▸ PKCS #11 3.2

･ SLH-DSA

･ FIPS status propagation from token:

･ pkcs11-module-assume-fips = yes

･ Trust Objects integration: Provide a Trust store to OpenSSL

▸ Extend the Symmetric Keys support (Dmitry Belyavskiy later today)

･ ML-KEM, derivation …

▸

Future work

What’s next?



Version number here V00000

23

kryoptic
 A PKCS #11 software 

token written in Rust  

using OpenSSL



Version number here V00000

kryoptic

24
Source:
https://github.com/latchset/kryoptic/ 
https://crates.io/crates/ossl 

▸ Software PKCS #11 implementation

･ using OpenSSL for cryptographic algorithm implementation

▸ Access OpenSSL primitives through a PKCS #11 API

▸ Written in rust

▸ All modern algorithms (including PQC)

▸ Useful (not only) for testing pkcs11-provider

▸ Side product: ossl crate: lightweight OpenSSL 3 native bindings

What is kryoptic?

https://github.com/latchset/kryoptic/
https://crates.io/crates/ossl


Version number here V00000

kryoptic

25

▸ Memory safety:

･ Bounds checks, thread safety at build time

･ Automatic memory management, but no GC

･ No runtime performance penalties

▸ Easy interfacing with C code

▸ A lot of refactors

･ Helpful compiler makes it safe

▸ Steep learning curve

Its cool!

Why rust?



Version number here V00000

▸ PKCS #11: FFI from application to Rust code

･ Convert inputs using unsafe { }

･ bindgen crate

Kryoptic: Token functionality: slots, 

sessions, mechanisms, locking, threading 

and more

▸ FFI from Rust to OpenSSL’s code

･ Call functions using unsafe {}

･ ossl crate

kryoptic

26

Memory safety limits

Interfacing C code from Rust



Version number here V00000

▸ Configure openssl.cnf with propq to use 

pkcs11 provider: 

-propquery="?provider=pkcs11"

▸ Configure pkcs11 provider to use kryoptic

▸ Offload the cryptographic operation from 

OpenSSL to OpenSSL

･ Test coverage

kryoptic

27

Source:
Gemini

For all the operations!

OpenSSL inside of OpenSSL



Version number here V00000

kryoptic

28

▸ Kryoptic can be statically linked with OpenSSL libfips.a

･ Few OpenSSL API tweaks

▸ Single static FIPS library with 2 APIs

･ Provider API: Usable in OpenSSL

･ PKCS #11: usable in NSS, GnuTLS, …

Two-headed monster

Kryoptic as a FIPS module



Version number here V00000

kryoptic

29

▸ PKCS #11 allows a lot of flexibility in some mechanisms

･ NIST SP800-108 KBKDF – IV lengths, odd combinations

▸ Static linking with FIPS provider

･ Different API for DigestSign API

･ Manual invocation of constructors, callbacks, tables

▸ Memory safety ends on FFI (unsafe {})

･ Rust can not guarantee what happens behind that

･ OpenSSL API expectations regarding the buffer bounds

-> test coverage needed

･ We can still crash

Challenges



Version number here V00000

Summary

PKCS #11:  an API to access HSM and smart cards

The latest release PKCS #11 3.2 comes with PQC 

Use pkcs11-provider to do so through OpenSSL

Testing? Replace the HW with kryoptic

New project? Use rust! We have ossl bindings!

30

Source:
https://crates.io/crates/ossl 

Summary

https://crates.io/crates/ossl


Version number here V00000

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

x.com/RedHat

31

Red Hat is the world’s leading provider of 

enterprise open source software solutions. 

Award-winning support, training, and consulting 

services make 

Red Hat a trusted adviser to the Fortune 500. 

Thank you


