Crypto-Agility: How It's Both a Critical Component and a Complex Challenge

Greg Wetmore

VP Software Development

What is Crypto-Agility?

At the simplest, crypto-agility is an attribute of a system that allows it to transition from one cryptographic system to another, by configuration or policy, without impacting all the infrastructure around it.

But Crypto-Agility is also...

Designing information systems to encourage support of rapid adaptations of new cryptographic primitives and algorithms without making significant changes to the system's infrastructure.

- Dr. Garfield Jones, Associate Chief of Strategic Technology, CISA

Cryptographic agility implies the ability to quickly respond to an algorithm being broken by switching to an alternative with minimal disruption. Because PQC algorithms are relatively new, crypto-agility is a key pillar of resilience in the quantum age.

- Dr. Michele Mosca, CEO evolutionQ

Crypto agility describes the capabilities needed to replace and adapt cryptographic algorithms for protocols, applications, software, hardware, and infrastructures without interrupting the flow of a running system to achieve resiliency.

- NIST CSWP 39, Considerations for Achieving Cryptographic Agility

Navigating Crypto-Agility

 Crypto agility is all of those, which can make it hard to define

• What we do know, it is so much more than just configuration and algorithms

- Today we're going to explore:
 - What's driving the need for crypto-agility
 - The different dimensions of crypto-agility
 - The benefits it delivers

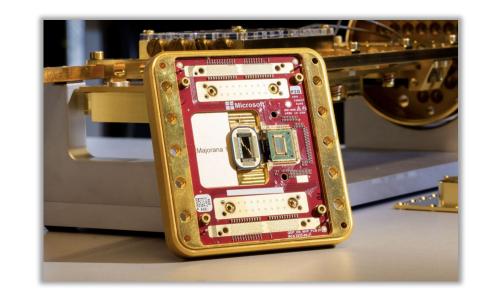
What's Driving the Criticality of Crypto-Agility

What's Driving the Criticality of Crypto-Agility

Organizations face a myriad of challenges as the threat landscape continues to grow and operations become more complex.

The Journey to Quantum Safe

Data and Device Sprawl


Organizational Complexity

Short-life Certificates

The Quantum Threat

- Advances in quantum computing are accelerating
- The risk from harvest now, decrypt later (HNDL) attacks needs to be addressed today
- The deadlines to prepare are approaching...

2025

NSA (CNSA 2.0) requires software, firmware, and browsers to prefer and support quantum safe algorithms

2033

NSA (CNSA 2.0) requires exclusive use of quantum-safe algorithms for software, firmware, and browsers


2030

NIST deprecating classical asymmetric algorithms like RSA

2035

NIST disallowing classical asymmetric algorithms

Data and Device Sprawl

- The threat landscape is expanding:
 - **75B connected devices** by 2025, up from 31B in 2020
 - **175 zettabytes of data** needing protection, growing to 421ZB by 2030
- The explosion of data and devices results in an explosion of crypto assets to secure them
- Attacks on cryptographic systems are increasing in number and sophistication

The A Register

Stolen Microsoft key may have opened up a lot more than US govt email inboxes

How does the Azure giant come back from this?

ri 21 Jul 2023 // 22:58 UTC

The A Register®

Google warns stolen Android keys used to sign info-stealing malware

OEMs including Samsung, LG and Mediatek named and shamed

Mon 5 Dec 2022 // 22:30 UTC

Operational Complexity

- Multiple, fragmented tools used to manage cryptography enterprise-wide
- Tools, assets, and data managed by independent teams
- Accelerating pace of change
 Top Challenges in Deploying and Managing PKI

Source: 2024 Ponemon PKI & Post-Quantum Trends

Short-Life Certificates

- Growth of the certificate landscape makes manual processes unsustainable
- Lack of visibility creates an increasing risk of outage or expiry
- Compliance and security challenges
- The number one cause of breaches is credential compromise
- Reputational damages

The A Register

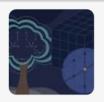
Sysadmins rage over Apple's 'nightmarish' SSL/TLS cert lifespan cuts plot

Max validity down from 398 days to proposed 45 by 2027

Crypto-Agility Plan for Change

- We can expect more change in the next 10 years, than we've experienced in the past 30
 - 30 years of RSA; 20 years of ECC
 - The PQC era is already evolving at a rapid rate
- Cryptography is Dynamic!

NIST National Institute of Standards and Technology...


NIST Releases First 3 Finalized Post-Quantum Encryption Standards

Aug 13, 2024

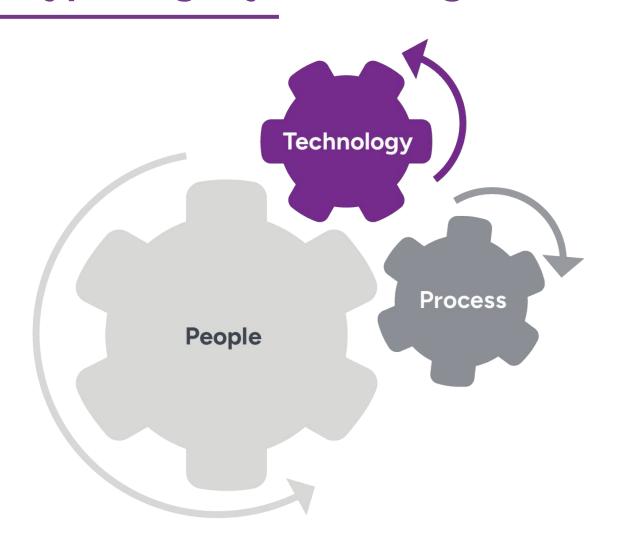
National Institute of Standards and Technology...

NIST Announces 14 Candidates to Advance to the Second Round of the Additional Digital Signatures for the...

Oct 25, 2024

National Institute of Standards and Technology...

NIST Selects HQC as Fifth Algorithm for Post-Quantum Encryption


3 weeks ago

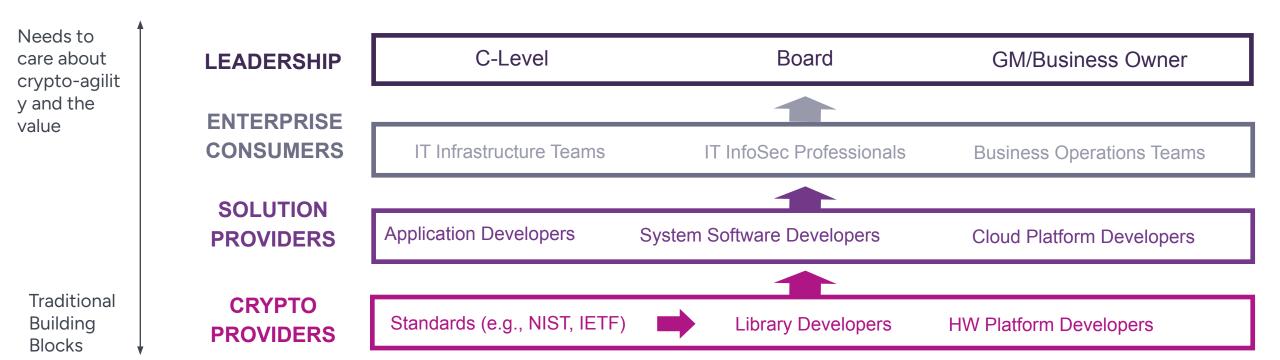
The Different Dimensions of Crypto-Agility

Crypto-Agility at the Organizational Level

People - role that people play in an organization's cryptographic agility

Process - how governance, compliance, policies, processes, and procedures influence cryptographic agility

Technology - the influence and importance of technology on cryptographic agility


Crypto-Agility: People

Even the best technology fails without informed and engaged teams...

- Accountability
- Training and Awareness
 - IT, Development, Operations
 - Legal, Compliance
 - Business Stakeholders
- Executive Leadership

Crypto-Agility: The Stack of Stakeholders

"Achieving crypto agility is not only a task for product designers or implementors but also for practitioners, security policy makers, and IT administrators." – NIST CSWP 39 ipd

Crypto-Agility: Process

Process informs how governance, compliance, policies, processes, and procedures influence cryptographic agility.

- Policy Management and Governance
- Risk and Compliance
- Vendor and Ingredient Technology
- Change Management and Incident Response
- Traceability and Audit

Do your current practices provide adequate answers to these questions?

How do you know if you are compliant with corporate security and data protection policies?

Where are your keys and secrets being stored?

Are you following industry best practices when managing keys and secrets?

Who created this key?

Who has permissions to access those keys?

How do you know these keys cannot be exported to another country, violating data sovereignty mandates?

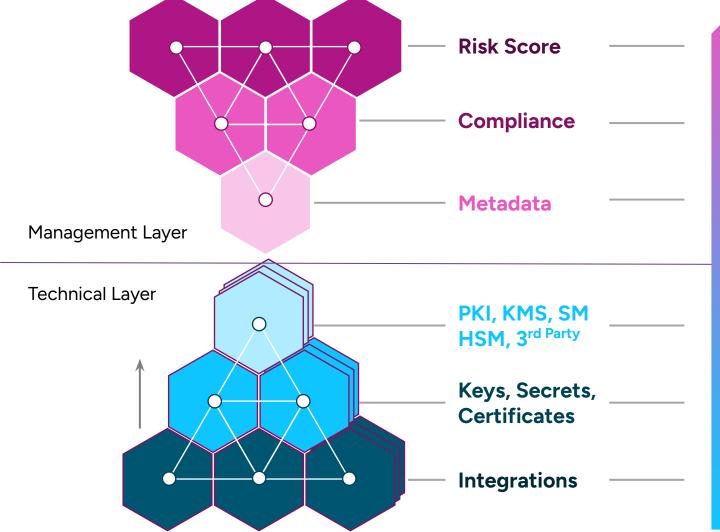
What data or workload are the keys being used to protect?

Do we have any critical high-value keys that require hardware protection?

Do we have granular documentation with an accurate audit trail of your keys and secrets?

What type of key and security strength is specified?

Why is this key being used in a production environment when it was created solely for test purposes?


When do the keys need to be rotated/retired?

Crypto-Agility: Technology

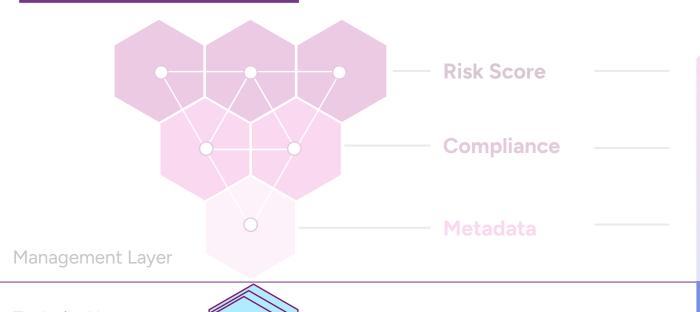
Technology: Control Plane vs Data Plane

6

Calculate risk

Validate against policies

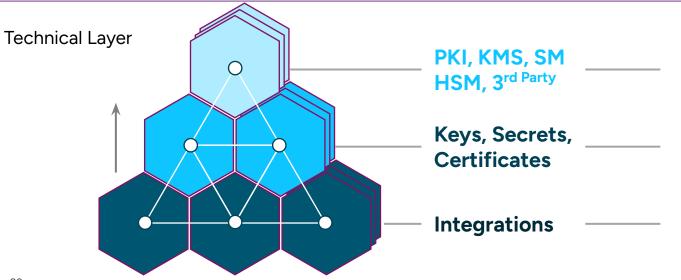
Collecting metadata of the infrastructure and the keys, secrets and certificates


Generating and manging cryptographic material

Cryptographic material like keys, certificates and secrets

Infrastructure that utilize cryptographic material

Examining the Technical Layer

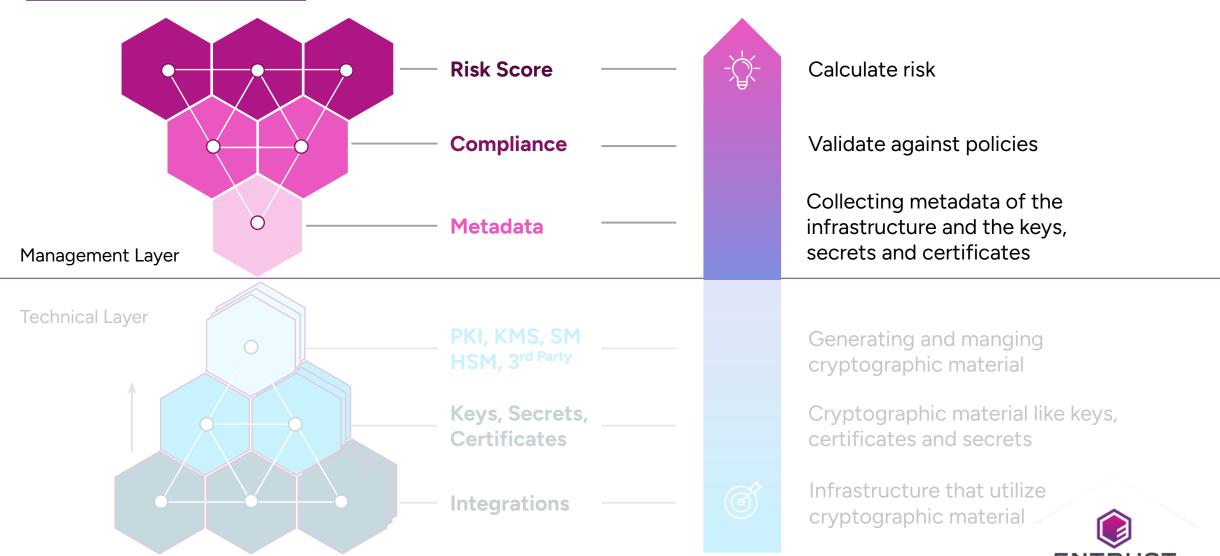


Calculate risk

Validate against policies

Collecting metadata of the infrastructure and the keys, secrets and certificates

Generating and manging cryptographic material


Cryptographic material like keys, certificates and secrets

Infrastructure that utilize cryptographic material

Examining the Management Layer

The Value of Achieving Crypto-Agility

Crypto-Agility: A Key Pillar in PQ Preparedness

"Organizations must adopt cryptographic agility to address vulnerabilities while building defense-in-depth frameworks to ensure layered protection."

"Cryptographic agility implies the ability to quickly respond to an algorithm being broken by switching to an alternative with minimal disruption. Because PQC algorithms are relatively new, crypto-agility is a key pillar of resilience in the quantum age."

Post-Quantum Preparedness Journey

ESTABLISH GROUP

accountable for organization-wide strategy and transition

INVENTORY CRYPTO ASSETS

Automated/manual process for keys, certificates, secrets and libraries....map to data

MODERNISE NOW

Simplify, consolidate, replace point crypto platforms now for a more controlled migration

PQ SECURITY MANAGEMENT

As the standards, regulations, and best practices mature, ensure you are maturing too

INVENTORY DATA & FLOWS

To determine highest priority ecosystems □ where to start

CRYPTO AGILITY STRATEGY

Critical for transition; mitigate risk relating to cryptography including people, process, and technology

TEST AND MIGRATE

With NIST finalist algorithms and while the standards developing – use hybrid

Implement Cryptographic Guardrails

- How does CA help organizations move faster
- By applying security the right way, and having organization-wide policy, it applies guardrails to different groups who might work with cryptography
 - Improves efficiency
 - Allows for more innovative product development
 - Enables teams that aren't crypto experts

"The most effective way to manage and control the use of cryptography is through establishing a single team that has the expertise needed to make effective policy for the organization."

-Gartner, Report: Postquantum Cryptography: The Time to Prepare Is Now!, July 2024

Confidence with the C-Suite

Full discovery and centralized visibility of cryptographic assets:

- Keys, certificates, and secrets
- Tokens, cryptographic libraries, protocols, configs

Compliance & Risk Mitigation

- Centralized compliance policy definition and management
- Priority remediation alerts
- Reporting and analytics

Key Takeaways: How to Apply

- Accountability
 - Determine who will be accountable within your organization
 - An individual or group needs to over see crypto agility and strategy
- Inventory
 - Discovery and inventory of cryptographic assets: keys, certificates, secrets, hardware, software, etc.
- Maturity
 - The secret to having an orderly and organized transition is crypto-agility
 - Develop capabilities around: find, control and automate
 - Figure out where your maturity is and build a plan to reach a higher level
- Implement and execute
 - Test and rollout into production

Crypto-Agility Maturity Model

Starting building blocks on how to measure crypto agility

0 - INITIAL / NOT POSSIBLE

This is the default level illustrating the lack of evaluation or exclusion of cryptoagility

1 - POSSIBLE

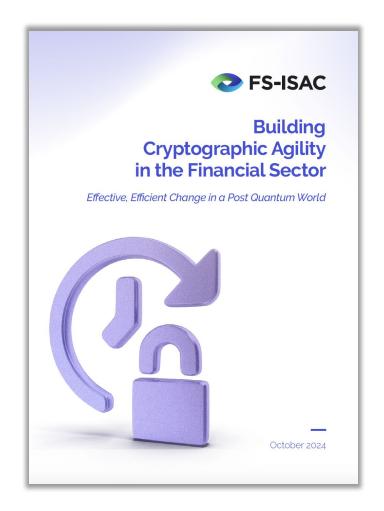
Systems can be adapted so crypto can respond dynamically to future changes but only necessary primary conditions are met

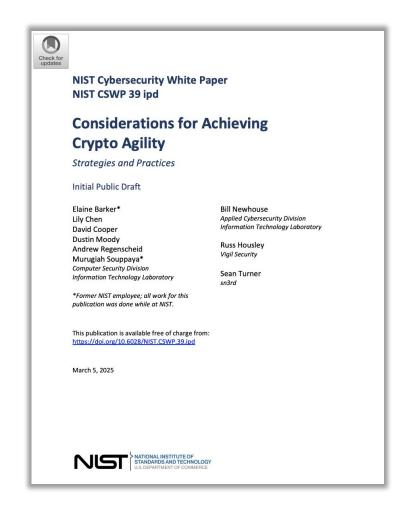
2 - PREPARED

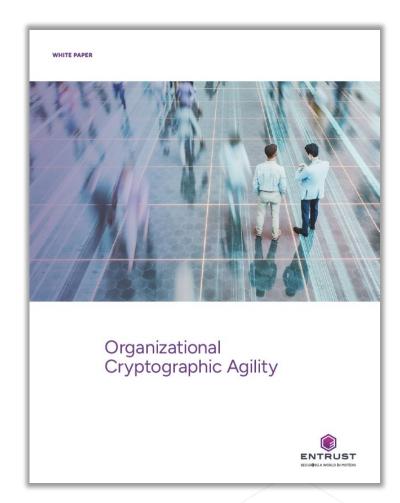
Systems are capable of certain measures, but there is still some preparty work required to change crypto functions

3- PRACTICED

Systems ability to migrate between different crypt methods are demonstrated


4 - SOPHISTICATED


At the highest maturity level, systems have advanced capabilities in terms of crypto-agility


There's a need to further develop this model to include people and processes

Key Takeaways: Resources to Explore

Thank You

Greg.Wetmore@entrust.com

entrust.com

