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Hi, I am xnox

● Debian Developer
● Ubuntu Core Developer
● Intel Clear Linux*
● Chainguard
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Cryptography contributions

● OpenSSL
● Libressl
● Boringssl
● AWS-LC
● Grub cryptography code
● Kernel crypto API

● Vendor changes to secureboot rhboot/shim “openssl”
● Vendor changes to secureboot edk2 “openssl”
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My history with OpenSSL

● Backported ARMv7 hardware-optimisations
● Backported IBM Z / s390x hardware-optimisations
● Upgraded 18.04 LTS from 1.1.0 to 1.1.1
● Raised Security Level to 2 by default
● Disabled TLSv1.1 by default
● Ship latest upstream releases
● Retrofit certified FIPS providers with new OpenSSL
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Incompatible “stable” updates

● OpenSSL stable updates policy
● Ubuntu Stable Release Updates

● Ubuntu freezes OpenSSL on a minor point release (1.0.1f, 1.0.2g, 1.1.1f, 3.02, etc)
● Targeted cherry-picks only
● Security fixes, bugfixes, and hardware acceleration
● No ABI changes - because $release-updates is a rolling stream

● OpenSSL stable updates - can change ABI, regression vs feature
● Duplication of work
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Release Schedules not regular

● Ubuntu 18.04 LTS scheduled for April 2018

● OpenSSL 1.1.1 released September 2018

● With TLSv1.3 support & Ed25519

● Demand anticipated
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Agreement to backport

● Agreed to wait for upsteam 1.1.1

● Agreed to backport

● In theory ABI forward compatible

● In theory no changes needed
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Interim result

● ~12+ packages needed upgrades
● Turned out ABI is compatible, but API behaviour changes
● Require code changes to update to new requirements
● Decide to downgrade nodejs to use libssl1.0
● … and that’s it

● Broke nodejs for all
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ABI changes are hard

● LTS distros set ABI

● 3rd party ecosystems target those ABIs

● Breaking ABI not acceptable

● Adding ABI often is not OK either

● Deprecating ABI is often impossible

● Runtime behaviour changes often the easiest to land
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OpenSSL ABI is unstable

● Config options change public ABI
● Config options change runtime behaviour
● Test suite expects deprecated features to work
● Test suite expects museum cryptography to work
● Bind-now / Apps expect Engine API to be present
● Nodejs expects and often loads legacy provider
● Webpack tries to use MD4
● Config options often do not apply to libcrypto
● Minimum / floor settings not enforced
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Shipping latest OpenSSL

● Just ship latest OpenSSL?
● Rolling distros / Intel Clear Linux / Chainguard
● Requires extensive testing
● Chainguard spins up 10,000+ kubernetes clusters
● Compatibility with OpenSSL FIPS provider sometimes breaks
● Compatibility with Symcrypt / Wolfcrypt / etc sometimes breaks
● Performance behind forks of OpenSSL (boringcrypto, aws-lc, cloudflare)
● Behind in features for Hybrid-PQC, PQC, QUIC
● Easier to accumulate ABI, very hard to drop ABI
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Fun shipping latest OpenSSL

● Land 3.5.3
● Broke OpenSSH version check
● Withdraw 3.5.3
● Remove bogus OpenSSH version
● Reland 3.5.3, land 3.5.4, land 3.6.0

● Rebuild ~1,700+ project containers, two arches, all version streams
● Deploy 10,000+ kubernetes clusters to test all combinations everything
● FIPS providers: 3.1.2; 3.4.0; 3.6.0
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What can be done better?

● Port upstream projects away from deprecated API / ABI
● Ensure stable public ABI irrespective of no-* options

○ Enable builds with deprecated-stubs (glibc style)
○ E.g. keep ENGINE symbols, hide them for new linking
○ E.g. keep ENGINE symbols, but do nothing / return success

● Status quo, turning off TLSv1.1, deprecated API will break
○ Python
○ Nodejs
○ .NET



Ensure conflict-free patches

● Keep NEWS / CHANGES / doc changes separate
● Often conflict on cherry-pick / backport
● Automatic cherry-pick fails, requiring human intervention
● Downstream has own changelogs / git / %changes / etc
● Consider using changelog snippet files (see cpython)
● Consider to generate News/Changes from git log
● Consider enforcing News/Changes in stand-alone commits
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Help security scanners

● Security scanners expect release versions
● Building from tag/tarball helps with automation
● Consider fully automatic stable releases every week
● Consider to always tag security fixes
● Such that security patches can always be referred by a tagged version
● For all supported branches, and merge to stable branch
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Questions?
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How to enable TLSv1.1 TLSv1.0 on 20.04 LTS?
How to disable TLSv1.1 TLSv1.0 on 18.04 LTS?

Keeps going up and down in popularity


