
12+ Years of Shipping
OpenSSL
Dimitri John Ledkov

1

Hi, I am xnox

● Debian Developer
● Ubuntu Core Developer
● Intel Clear Linux*
● Chainguard

2

Cryptography contributions

● OpenSSL
● Libressl
● Boringssl
● AWS-LC
● Grub cryptography code
● Kernel crypto API

● Vendor changes to secureboot rhboot/shim “openssl”
● Vendor changes to secureboot edk2 “openssl”

3

My history with OpenSSL

● Backported ARMv7 hardware-optimisations
● Backported IBM Z / s390x hardware-optimisations
● Upgraded 18.04 LTS from 1.1.0 to 1.1.1
● Raised Security Level to 2 by default
● Disabled TLSv1.1 by default
● Ship latest upstream releases
● Retrofit certified FIPS providers with new OpenSSL

4

Incompatible “stable” updates

● OpenSSL stable updates policy
● Ubuntu Stable Release Updates

● Ubuntu freezes OpenSSL on a minor point release (1.0.1f, 1.0.2g, 1.1.1f, 3.02, etc)
● Targeted cherry-picks only
● Security fixes, bugfixes, and hardware acceleration
● No ABI changes - because $release-updates is a rolling stream

● OpenSSL stable updates - can change ABI, regression vs feature
● Duplication of work

5

Release Schedules not regular

● Ubuntu 18.04 LTS scheduled for April 2018

● OpenSSL 1.1.1 released September 2018

● With TLSv1.3 support & Ed25519

● Demand anticipated

6

7

Agreement to backport

● Agreed to wait for upsteam 1.1.1

● Agreed to backport

● In theory ABI forward compatible

● In theory no changes needed

8

9

10

Interim result

● ~12+ packages needed upgrades
● Turned out ABI is compatible, but API behaviour changes
● Require code changes to update to new requirements
● Decide to downgrade nodejs to use libssl1.0
● … and that’s it

● Broke nodejs for all

11

12

ABI changes are hard

● LTS distros set ABI

● 3rd party ecosystems target those ABIs

● Breaking ABI not acceptable

● Adding ABI often is not OK either

● Deprecating ABI is often impossible

● Runtime behaviour changes often the easiest to land

13

OpenSSL ABI is unstable

● Config options change public ABI
● Config options change runtime behaviour
● Test suite expects deprecated features to work
● Test suite expects museum cryptography to work
● Bind-now / Apps expect Engine API to be present
● Nodejs expects and often loads legacy provider
● Webpack tries to use MD4
● Config options often do not apply to libcrypto
● Minimum / floor settings not enforced

14

Shipping latest OpenSSL

● Just ship latest OpenSSL?
● Rolling distros / Intel Clear Linux / Chainguard
● Requires extensive testing
● Chainguard spins up 10,000+ kubernetes clusters
● Compatibility with OpenSSL FIPS provider sometimes breaks
● Compatibility with Symcrypt / Wolfcrypt / etc sometimes breaks
● Performance behind forks of OpenSSL (boringcrypto, aws-lc, cloudflare)
● Behind in features for Hybrid-PQC, PQC, QUIC
● Easier to accumulate ABI, very hard to drop ABI

15

16

17

Fun shipping latest OpenSSL

● Land 3.5.3
● Broke OpenSSH version check
● Withdraw 3.5.3
● Remove bogus OpenSSH version
● Reland 3.5.3, land 3.5.4, land 3.6.0

● Rebuild ~1,700+ project containers, two arches, all version streams
● Deploy 10,000+ kubernetes clusters to test all combinations everything
● FIPS providers: 3.1.2; 3.4.0; 3.6.0

18

19

20

What can be done better?

● Port upstream projects away from deprecated API / ABI
● Ensure stable public ABI irrespective of no-* options

○ Enable builds with deprecated-stubs (glibc style)
○ E.g. keep ENGINE symbols, hide them for new linking
○ E.g. keep ENGINE symbols, but do nothing / return success

● Status quo, turning off TLSv1.1, deprecated API will break
○ Python
○ Nodejs
○ .NET

Ensure conflict-free patches

● Keep NEWS / CHANGES / doc changes separate
● Often conflict on cherry-pick / backport
● Automatic cherry-pick fails, requiring human intervention
● Downstream has own changelogs / git / %changes / etc
● Consider using changelog snippet files (see cpython)
● Consider to generate News/Changes from git log
● Consider enforcing News/Changes in stand-alone commits

21

Help security scanners

● Security scanners expect release versions
● Building from tag/tarball helps with automation
● Consider fully automatic stable releases every week
● Consider to always tag security fixes
● Such that security patches can always be referred by a tagged version
● For all supported branches, and merge to stable branch

22

Questions?

23

How to enable TLSv1.1 TLSv1.0 on 20.04 LTS?
How to disable TLSv1.1 TLSv1.0 on 18.04 LTS?

Keeps going up and down in popularity

