Confidential Customized for Lorem Ipsum LLC Version 1.0

The Python Cryptographic
Authority’'s OpenSSL Experience

Alex Gaynor & Paul Kehrer

Hello!

Hello!

What is the Python Cryptographic
Authority?

What is the Python Cryptographic
Authority?

How do we use OpenSSL?

A brief history... e Multiple backends

A brief history... e Multiple backends

A brief history... e Multiple backends
e One backend: OpenSSL

A brief history... e Multiple backends
® One backend: OpenSSL

e Along came the forks

A brief history...

Multiple backends

One backend: OpenSSL
Along came the forks
Please sir, I'd like some
memory safety

A brief history...

Multiple backends

One backend: OpenSSL
Along came the forks
Please sir, I'd like some
memory safety

A brief history...

Multiple backends

One backend: OpenSSL
Along came the forks
Please sir, I'd like some
memory safety

When it rains it pours

Distribution

Distribution

What we want from a
cryptography library

Desiderata

Desiderata e Security

Desiderata ® Security
® Correctness

Desiderata ® Security
® Correctness

Desiderata e Security
® Correctness

® Performance

Security
Correctness
Performance
Generality

Desiderata

Desiderata

Security
Correctness
Performance
Generality
Ergonomics

What are our challenges with
OpenSSL?

Testing e Coverage

Testing e Coverage

Testing e Coverage
® Unreliable CI hides issues

Testing e Coverage
® Unreliable CI hides issues
e Bug fixes don’t always
come with tests

Testing e Coverage
® Unreliable CI hides issues
® Bug fixes don’t always
come with tests

How do we improve?

Cl Improvements

Combine and require
coverage

Improve the performance
of each job so the
feedback loop is faster

Cl reliability improvements
Expand testing to new
areas

Cl Improvements

Combine and require
coverage

Improve the performance
of each job so the
feedback loop is faster

Cl reliability improvements
Expand testing to new
areas

Performance

Performance

Performance e In the beginning, it was
fine

Performance e In the beginning, it was
fine
® OpenSSL 3 regressed

Performance e In the beginning, it was
fine

® OpenSSL 3 regressed
e Complexity is growing

Performance

In the beginning, it was
fine

OpenSSL 3 regressed
Complexity is growing
Root causes are
unaddressed

Performance

In the beginning, it was
fine

OpenSSL 3 regressed
Complexity is growing
Root causes are
unaddressed

API Design

API Design e Mutable keys and other
structures

API Design e Mutable keys and other
structures

API Design e Mutable keys and other
structures

e Unclear ownership
semantics

API Design e Mutable keys and other
structures

e Unclear ownership
semantics

API Design

Mutable keys and other
structures

Unclear ownership
semantics

General complexity

API Design

Mutable keys and other
structures

Unclear ownership
semantics

General complexity

int mlkem_encapsulate(const unsigned char *pubkey_bytes, size_t pubkey_len, int mlkem_encapsulate(const uint8_t *serialized_pubkey,

unsigned char *shared_secret_out, unsigned char *ciphertext_out) size_t pubkey_len,

{ uint8_t out_shared_secret[MLKEM_SHARED_SECRET_BYTES],

VP PKEY * ey = NULL: uint8_t out_ciphertext[MLKEM768_CIPHERTEXT_BYTES]) {

T peer_pkey = ’ if (serialized_pubkey == NULL || out_shared_secret == NULL || out_ciphertext == NULL) {

int ret = 6; return 0;

OSSL_PARAM params[2]; }

// Create an EVP_PKEY from the raw public key bytes

params[@] = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PUB_KEY, // Parse the serialized public key

(void *)pubkey bytes, pubkey_len); struct MLKEM768_public_key public_key;
CBS cbs;

params[1] = OSSL_PARAM_construct_end();

CBS_init(&cbs, serialized_pubke: ubkey_len);
EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new_from_name(NULL, "ML-KEM-768", NULL); = (’ -P Ys P y_len);

if (ctx == NULL) { if (IMLKEM768_parse_public_key(&public_key, &cbs)) {
goto cleanup; return @; // Parse error
} }
if (EVP_PKEY_fromdata_init(ctx) <= @) {
goto cleanup; // Check that there are no trailing bytes
if (CBS_len(&cbs) != 0) {
} return ©; // Unexpected trailing data
if (EVP_PKEY_fromdata(ctx, &peer_pkey, EVP_PKEY_PUBLIC_KEY, params) <= 0) { }
goto cleanup;
} // Encapsulate a random shared secret
// Free the old context and create new one for encapsulation MLKEM768_encap(out_ciphertext, out_shared_secret, &public_key);
EVP_PKEY_CTX_free(ctx);
ctx = EVP_PKEY_CTX_new(peer_pkey, NULL);) return 1;

if (ctx == NULL) {
goto cleanup;

}
if (EVP_PKEY_encapsulate_init(ctx, NULL) <= @) {
goto cleanup;

}
size_t ct_size = OSSL_ML_KEM_768_CIPHERTEXT_BYTES;
size_t secret_size = 0SSL_ML_KEM_SHARED_SECRET_BYTES;
// Perform encapsulation
if (EVP_PKEY_encapsulate(ctx, ciphertext_out, &ct_size, shared_secret_out,
&secret_size) <= 0) {
goto cleanup;

}

ret = 1;

cleanup:
EVP_PKEY_free(peer_pkey);
EVP_PKEY_CTX_free(ctx);
return ret;

Internal
Complexity

Source code readability
Custom preprocessor
Breaks grep

Breaks go-to-definition

Internal
Complexity

Source code readability
Custom preprocessor
Breaks grep

Breaks go-to-definition

Internal
Complexity

Source code readability
Custom preprocessor
Breaks grep

Breaks go-to-definition

Strict Parsing

Strict Parsing

Divergence from o LibreSSL
forks ® BoringSSL

® aws-Ic

What we think a modern
cryptography library should drive
towards

Memory safety

Memory safety

Memory safety

Extremely well tested

Extremely well tested

Extremely well tested

Narrow API surfaces

Narrow API surfaces

Performance by design

Performance by design

Thank you!

