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int mlkem_encapsulate(const unsigned char *pubkey_bytes, size_t pubkey_len,
unsigned char *shared_secret_out, unsigned char *ciphertext_out) 

{
EVP_PKEY *peer_pkey = NULL;
int ret = 0;
OSSL_PARAM params[2];
// Create an EVP_PKEY from the raw public key bytes
params[0] = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PUB_KEY,

(void *)pubkey_bytes, pubkey_len);
params[1] = OSSL_PARAM_construct_end();
EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new_from_name(NULL, "ML-KEM-768", NULL);
if (ctx == NULL) {

goto cleanup;
}
if (EVP_PKEY_fromdata_init(ctx) <= 0) {

goto cleanup;
}
if (EVP_PKEY_fromdata(ctx, &peer_pkey, EVP_PKEY_PUBLIC_KEY, params) <= 0) {

goto cleanup;
}
// Free the old context and create new one for encapsulation
EVP_PKEY_CTX_free(ctx);
ctx = EVP_PKEY_CTX_new(peer_pkey, NULL);
if (ctx == NULL) {

goto cleanup;
}
if (EVP_PKEY_encapsulate_init(ctx, NULL) <= 0) {

goto cleanup;
}
size_t ct_size = OSSL_ML_KEM_768_CIPHERTEXT_BYTES;
size_t secret_size = OSSL_ML_KEM_SHARED_SECRET_BYTES;
// Perform encapsulation
if (EVP_PKEY_encapsulate(ctx, ciphertext_out, &ct_size, shared_secret_out, 

&secret_size) <= 0) {
goto cleanup;

}
ret = 1;

cleanup:
EVP_PKEY_free(peer_pkey);
EVP_PKEY_CTX_free(ctx);
return ret;

}

int mlkem_encapsulate(const uint8_t *serialized_pubkey,
size_t pubkey_len,
uint8_t out_shared_secret[MLKEM_SHARED_SECRET_BYTES],
uint8_t out_ciphertext[MLKEM768_CIPHERTEXT_BYTES]) {

if (serialized_pubkey == NULL || out_shared_secret == NULL || out_ciphertext == NULL) {
return 0;

}

// Parse the serialized public key
struct MLKEM768_public_key public_key;
CBS cbs;
CBS_init(&cbs, serialized_pubkey, pubkey_len);

if (!MLKEM768_parse_public_key(&public_key, &cbs)) {
return 0;  // Parse error

}

// Check that there are no trailing bytes
if (CBS_len(&cbs) != 0) {

return 0;  // Unexpected trailing data
}

// Encapsulate a random shared secret
MLKEM768_encap(out_ciphertext, out_shared_secret, &public_key);

return 1;
}
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Divergence from 
forks

● LibreSSL
● BoringSSL
● aws-lc
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Thank you!


