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int mlkem_encapsulate(const unsigned char *pubkey_bytes, size_t pubkey_len, int mlkem_encapsulate(const uint8_t *serialized_pubkey,

unsigned char *shared_secret_out, unsigned char *ciphertext_out) size_t pubkey_len,

{ uint8_t out_shared_secret[MLKEM_SHARED_SECRET_BYTES],

VP PKEY * ey = NULL: uint8_t out_ciphertext[MLKEM768_CIPHERTEXT_BYTES]) {

T peer_pkey = ’ if (serialized_pubkey == NULL || out_shared_secret == NULL || out_ciphertext == NULL) {

int ret = 6; return 0;

OSSL_PARAM params[2]; }

// Create an EVP_PKEY from the raw public key bytes

params[@] = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PUB_KEY, // Parse the serialized public key

(void *)pubkey bytes, pubkey_len); struct MLKEM768_public_key public_key;
CBS cbs;

params[1] = OSSL_PARAM_construct_end();

CBS_init(&cbs, serialized_pubke: ubkey_len);
EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new_from_name(NULL, "ML-KEM-768", NULL); = ( ’ -P Ys P y_len);

if (ctx == NULL) { if (IMLKEM768_parse_public_key(&public_key, &cbs)) {
goto cleanup; return @; // Parse error
} }
if (EVP_PKEY_fromdata_init(ctx) <= @) {
goto cleanup; // Check that there are no trailing bytes
if (CBS_len(&cbs) != 0) {
} return ©; // Unexpected trailing data
if (EVP_PKEY_fromdata(ctx, &peer_pkey, EVP_PKEY_PUBLIC_KEY, params) <= 0) { }
goto cleanup;
} // Encapsulate a random shared secret
// Free the old context and create new one for encapsulation MLKEM768_encap(out_ciphertext, out_shared_secret, &public_key);
EVP_PKEY_CTX_free(ctx);
ctx = EVP_PKEY_CTX_new(peer_pkey, NULL); ) return 1;

if (ctx == NULL) {
goto cleanup;

}
if (EVP_PKEY_encapsulate_init(ctx, NULL) <= @) {
goto cleanup;

}
size_t ct_size = OSSL_ML_KEM_768_CIPHERTEXT_BYTES;
size_t secret_size = 0SSL_ML_KEM_SHARED_SECRET_BYTES;
// Perform encapsulation
if (EVP_PKEY_encapsulate(ctx, ciphertext_out, &ct_size, shared_secret_out,
&secret_size) <= 0) {
goto cleanup;

}

ret = 1;

cleanup:
EVP_PKEY_free(peer_pkey);
EVP_PKEY_CTX_free(ctx);
return ret;
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Thank you!



