
Confidential Customized for Lorem Ipsum LLC Version 1.0

The Python Cryptographic
Authority's OpenSSL Experience
Alex Gaynor & Paul Kehrer

Hello!

Hello!

What is the Python Cryptographic
Authority?

What is the Python Cryptographic
Authority?

How do we use OpenSSL?

A brief history… ● Multiple backends

A brief history… ● Multiple backends

A brief history… ● Multiple backends
● One backend: OpenSSL

A brief history… ● Multiple backends
● One backend: OpenSSL
● Along came the forks

A brief history… ● Multiple backends
● One backend: OpenSSL
● Along came the forks
● Please sir, I’d like some

memory safety

A brief history… ● Multiple backends
● One backend: OpenSSL
● Along came the forks
● Please sir, I’d like some

memory safety

A brief history… ● Multiple backends
● One backend: OpenSSL
● Along came the forks
● Please sir, I’d like some

memory safety
● When it rains it pours

Distribution

Distribution

What we want from a
cryptography library

Desiderata

Desiderata ● Security

Desiderata ● Security
● Correctness

Desiderata ● Security
● Correctness

Desiderata ● Security
● Correctness
● Performance

Desiderata ● Security
● Correctness
● Performance
● Generality

Desiderata ● Security
● Correctness
● Performance
● Generality
● Ergonomics

What are our challenges with
OpenSSL?

Testing ● Coverage

Testing ● Coverage

Testing ● Coverage
● Unreliable CI hides issues

Testing ● Coverage
● Unreliable CI hides issues
● Bug fixes don’t always

come with tests

Testing ● Coverage
● Unreliable CI hides issues
● Bug fixes don’t always

come with tests

How do we improve?

CI Improvements ● Combine and require
coverage

● Improve the performance
of each job so the
feedback loop is faster

● CI reliability improvements
● Expand testing to new

areas

CI Improvements ● Combine and require
coverage

● Improve the performance
of each job so the
feedback loop is faster

● CI reliability improvements
● Expand testing to new

areas

Performance

Performance

Performance ● In the beginning, it was
fine

Performance ● In the beginning, it was
fine

● OpenSSL 3 regressed

Performance ● In the beginning, it was
fine

● OpenSSL 3 regressed
● Complexity is growing

Performance ● In the beginning, it was
fine

● OpenSSL 3 regressed
● Complexity is growing
● Root causes are

unaddressed

Performance ● In the beginning, it was
fine

● OpenSSL 3 regressed
● Complexity is growing
● Root causes are

unaddressed

API Design

API Design ● Mutable keys and other
structures

API Design ● Mutable keys and other
structures

API Design ● Mutable keys and other
structures

● Unclear ownership
semantics

API Design ● Mutable keys and other
structures

● Unclear ownership
semantics

API Design ● Mutable keys and other
structures

● Unclear ownership
semantics

● General complexity

API Design ● Mutable keys and other
structures

● Unclear ownership
semantics

● General complexity

int mlkem_encapsulate(const unsigned char *pubkey_bytes, size_t pubkey_len,
unsigned char *shared_secret_out, unsigned char *ciphertext_out)

{
EVP_PKEY *peer_pkey = NULL;
int ret = 0;
OSSL_PARAM params[2];
// Create an EVP_PKEY from the raw public key bytes
params[0] = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PUB_KEY,

(void *)pubkey_bytes, pubkey_len);
params[1] = OSSL_PARAM_construct_end();
EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new_from_name(NULL, "ML-KEM-768", NULL);
if (ctx == NULL) {

goto cleanup;
}
if (EVP_PKEY_fromdata_init(ctx) <= 0) {

goto cleanup;
}
if (EVP_PKEY_fromdata(ctx, &peer_pkey, EVP_PKEY_PUBLIC_KEY, params) <= 0) {

goto cleanup;
}
// Free the old context and create new one for encapsulation
EVP_PKEY_CTX_free(ctx);
ctx = EVP_PKEY_CTX_new(peer_pkey, NULL);
if (ctx == NULL) {

goto cleanup;
}
if (EVP_PKEY_encapsulate_init(ctx, NULL) <= 0) {

goto cleanup;
}
size_t ct_size = OSSL_ML_KEM_768_CIPHERTEXT_BYTES;
size_t secret_size = OSSL_ML_KEM_SHARED_SECRET_BYTES;
// Perform encapsulation
if (EVP_PKEY_encapsulate(ctx, ciphertext_out, &ct_size, shared_secret_out,

&secret_size) <= 0) {
goto cleanup;

}
ret = 1;

cleanup:
EVP_PKEY_free(peer_pkey);
EVP_PKEY_CTX_free(ctx);
return ret;

}

int mlkem_encapsulate(const uint8_t *serialized_pubkey,
size_t pubkey_len,
uint8_t out_shared_secret[MLKEM_SHARED_SECRET_BYTES],
uint8_t out_ciphertext[MLKEM768_CIPHERTEXT_BYTES]) {

if (serialized_pubkey == NULL || out_shared_secret == NULL || out_ciphertext == NULL) {
return 0;

}

// Parse the serialized public key
struct MLKEM768_public_key public_key;
CBS cbs;
CBS_init(&cbs, serialized_pubkey, pubkey_len);

if (!MLKEM768_parse_public_key(&public_key, &cbs)) {
return 0; // Parse error

}

// Check that there are no trailing bytes
if (CBS_len(&cbs) != 0) {

return 0; // Unexpected trailing data
}

// Encapsulate a random shared secret
MLKEM768_encap(out_ciphertext, out_shared_secret, &public_key);

return 1;
}

Internal
Complexity

● Source code readability
● Custom preprocessor
● Breaks grep
● Breaks go-to-definition

Internal
Complexity

● Source code readability
● Custom preprocessor
● Breaks grep
● Breaks go-to-definition

Internal
Complexity

● Source code readability
● Custom preprocessor
● Breaks grep
● Breaks go-to-definition

Strict Parsing

Strict Parsing

Divergence from
forks

● LibreSSL
● BoringSSL
● aws-lc

What we think a modern
cryptography library should drive
towards

Memory safety

Memory safety

Memory safety

Extremely well tested

Extremely well tested

Extremely well tested

Narrow API surfaces

Narrow API surfaces

Performance by design

Performance by design

Thank you!

