Safelogic

Cryptography Simplified

Building an SP 800 90B
Entropy Provider

Safelogic Proprietary and Confidential

10/9/25

Adam Gorak

Senior Cryptographic Implementation Engineer

Jake Maynard

Director of Engineering

Safelogic Proprietary and Confidential

v

Safelogic

Todays Roadmap

Safelogic

Drivers

Implementation .

10/9/25 Safelogic Proprietary and Confidential

What are the
drivers for
building an

entropy solution?

10/9/25 Safelogic Proprietary and Confidential

Patent History

Patent number: 9548862

romee G This is not our first time!

Filed: Nov 17, 2014
Date of Patent: Jan 17, 2017
Assignee: Safelogic. Inc. (Palo Alto. CA)

Managing entropy in computing devices for
cryptographic key generation

Nov 17,2014

This disclosure describes cryptographic secure implementation of a Pseudo Random Number
Generator (PRNG) architecture based on existing Fortuna algorithm, but providing improvements
thereupon for gathering and measuring entropy. The improvement includes a unique step of
initial seeding that is not covered by Fortuna. The solution should be adapted to a variety of
computing and communicating devices, including mobile devices.

Skip to: Description - Claims - References Cited - Patent History - Patent History
Description

TECHNICAL FIELD

This patent application is related to providing cryptographic solutions in general. In particular, this disclosure describes
utilization of entropy for secure cryptographic key generation.

10/9/25 Safelogic Proprietary and Confidential

Can we get rid of this?

Certificate #5040

Details

Module Name CryptoComply 140-3 FIPS Provider

Standard FIPS 140-3

Status Active

Sunset Date 8/26/2029

Overall Level 1

Caveat No assurance of the minimum strength of generated SSPs (e.g., keys) and random strings. No assurance of minimum security of SSPs (e.g., keys, bit
strings) that are externally loaded, or of SSPs established with externally loaded SSPs

Security Level Exceptions e Physical security: N/A
e Non-invasive security: N/A

Module Type Software

Embodiment Multi-Chip Stand Alone

Description SafelLogic's CryptoComply 140-3 FIPS Provider is designed to provide FIPS 140-3 validated cryptographic functionality and is available for licensing.

Product URL http://www.safelogic.com/cryptocomply/

10/9/25 Safelogic Proprietary and Confidential

-
[0}

NIAP / Common Criteria Requirements

Labgram #118/Valgram #137 - Entropy Source Validation Certificates 04/12/2024 NIAP Staff

RESOURCES - LABGRAMS

LABGRAM #118/VALGRAM #137 - ENTROPY SOURCE VALIDATION CERTIFICATES
Validators and CCTLs,

In accordance with NIAP Policy 5, Entropy Assessment Reports (EARs) must include a NIST Entropy Source Validation (ESV) certificate. The ESV certificate(s) must also be
included in the Check-out package, along with any other NIST CAVP/CMVP certificate, as specified in Labgram #102/Valgram #122. The transition to ESV certificates as
evidence for the min-entropy estimate will occur as follows:

Effective immediately, vendors and CCTLs may submit EARs and check-out packages that refer to an ESV certificate.

During CY?24, vendors and CCTLs may submit an EAR and check-out package without an ESV certificate to allow time for manufacturers to obtain ESV certificates for their

hardware noise sources as well as to accommodate any vendor-proprietary noise sources.

As of 1 January 2025, for any product not yet in-evaluation, all EARs and check-out packages must include an ESV certificate. Assumptions of entropy associated with third

party claims will no longer be allowed.

10/9/25 Safelogic Proprietary and Confidential

10/9/25

Section 9 — Sensitive security parameter management

9.3.A Entropy Caveats
Applicable Levels: All
Original Publishing Date: September 21, 2020
Effective Date: September 21, 2020
Last Modified Date: July 26, 2024
DAalarrant A nnnwtinnma. A QN0 NO
Question/Problem

When is it necessary for the module to provide the evidence of the amount of generated entropy?

How to handle the case when the amount of generated entropy is sufficient to meet the minimum SSP strength

requirement (112 bit) but not necessarily sufficient to account for a comparable strength of the generated
SSPs?

LULULLIVALY LLULLIUVL D) DSIIALL UL PIUDVUIIL ULl UIV 1IIVUULL LU LLLIVALY allu 111 Ul OVLVULILY 1 VlIvY.

12. Until January 1, 2026, new module submissions to the CMVP can meet an earlier version of Resolution
2(b) of this IG, located at the following URL: https://csrc.nist.gov/CSRC/media/Projects/cryptographic-
module-validation-
program/documents/I1G%209.3.A%20Resolution%202b%5BMarch%2026%202024%5D.pdf. This is a

‘soft’ transition in that modules that meet this earlier version of Resolution 2(b) will not be moved to the
Historical list on the transition date.

Safelogic Proprietary and Confidential

Design Thinking

10/9/25 Safelogic Proprietary and Confidential

Requirements

* Produces Full Entropy
* Meet customers where they are

in their OpenSSL Journey A il
* Portable to many Operating =% B
Environments
* Meet Performance Requirements
e Easy to Integrate with our FIPS s L

™ ’
B, TR

modules and yours!

10/9/25 Safelogic Proprietary and Confidential

OPeHSSL Applicaﬁons

2N ==
p— 0 ; ‘
errstr 3ender genpkey genrsa kdF

Legacy APls

Other Protocols "

EEEgE: ol —— .
= | = i Why not Build an
i ——

OpenSSL 3.x

—— Compatible Entropy

Provider ?
10/9/25 SafelLogic Proprietary and Confidential

/
AsSNI

Legacy
Proa?v:er

Closer Look at Scenario 1(b) from I.G. 9.3.A?

1. The module is either generating the entropy itself or 1t is making a call to request the entropy from a well-
defined source via the entropy source’s GetEntropy

Examples include:

<

(b) A software, firmware, or hybrid module that contains an approved DRBG, that is seeded exclus1ve
from one or more known entropy sources, located within the TOEPP (from I
software library on a Linux platform making a call to a SP 800-90B entr
module’s TOEPP for seeding its DRBG.

What is required: (i) the testing lab shall corroborate the entropy strength estimate of the sources as
provided by the vendor, (i1) the Security Policy shall state the minimum number of bits of entropy
requested per each GET function call.

If the amount of entropy used to generate the module’s SSPs employed in an approved mode is less
than 112 bits, then this module cannot be validated.

If the amount of entropy used to generate the module’s SSPs is at least 112 bits while the module
generates SSPs with a comparable cryptographic strength greater than the amount of available
entropy, the following caveat shall be included in the module’s certificate: The module generates
SSPs (e.g., keys) whose strengths are modified by available entropy.

10/9/25 Safelogic Proprietary and Confidential

Fetching to the Rescue

FETCH

/A

static local_get_entropy_fn *

|_get_entropy() = NULL: sl cces prov_entropy get fn *get entrop

FIPS Provider Entropy Provider

10/9/25

10/9/25 Safelogic Proprietary and Confidential

Implementation

10/9/25 Safelogic Proprietary and Confidential

Provider Framework — Overview

e Whatisit? Safe Logic
* Introduced in OpenSSL 3.0

* A plug-in style API for cryptographic implementations
* Replaces the old "ENGINE" framework
* Key Features
* Providers supply cryptographic algorithms (cipher, digest, key
management, etc.)
* Supports built-in (default, legacy, base) and custom providers (FIPS, 3™
party providers,)
* Fine-grained control over algorithm selection and properties
* Benefits
* Modular & extensible design
* Enables FIPS 140-3 compliance through the FIPS provider
* Simplifies integration of hardware accelerators or custom crypto
* Better separation between the OpenSSL core and crypto
implementations

10/9/25 Safelogic Proprietary and Confidential

Provider Framework - Architecture

10/9/25

EVP
API

N
OpenSSL Core \

Context
(OSSL_LIB_CTX)

p
Parameter Exchange

(OSSL_PARAM)

.

N\

J

Dispatch Tables

o

/

Core <->

-

Provider

Provider Module
Implementation

N\

J

>
| T
VUV o
S'S o | L
>, > c
O, 0 =S e
LLO
oo A
L

Algorithm and
Function Tables

N

J

o

/

OSSL_provider _init

Safelogic Proprietary and Confidential

v

Safelogic

Provider Framework — Core Concepts

Safelogic
* Providers: Shared modules implementing — S
: . Application

cryptographic algorithms. [(EVP API calls)]
* Dispatch Tables: Function pointers mapping

algorithm operations.
e Contexts (OSSL_LIB_CTX): Hold state,

configurations, and loaded providers. OpensSL Core
* Parameter Exchange (OSSL_PARAM): Flexible * Provider mgmt.

structure for algorithm settings. * Dispatch tables

e Core < Provider Boundary: OpenSSL core loads
providers dynamically via OSSL_provider _init.

* EVP APl — uses Core — dispatches to algorithms Providers Implementations
in Providers. (e.g., default, legacy, fips, ..)

* Providers return function tables for supported
operations (cipher, digest, keymgmt, etc.).

10/9/25 Safelogic Proprietary and Confidential

Basic Steps to Build and Use Provider

* Create a provider module (shared lib) and export
OSSL_provider _init()

* Place the module in the OpenSSL modules directory

* Enabled the provider in configuration

* Useit.

10/9/25 Safelogic Proprietary and Confidential

Safelogic

Example Simple Entropy Provider ~/

Source Code Safelogic

static const OSSL_DISPATCH my_entropy_dispatch_table[] = {

2 F X {OSSL_FUNC_PROVIDER ERY OPERATICN
int OSSL_provider_init(const OSSL_CORE_HANDLE *handle, (voia (*)Eﬁoid)bmy Sgtropv query o;eration}l
const 0SSL_DISPATCH *in, — — — 2

+ 0SSL DISPATCH **out {OSSL_FUNC_PROVIDER_GETTABLE_PARAMS,
o = ok / (void (*)(void))my_entropy_gettable_params},

3 x%
o Yoid *¥provetx) { {OSSL_FUNC_PROVIDER_GET_PARAMS, (void (*)(void))my entropy get params},
*out =|my entropy dispatch table;| 8, NULL}};
& 4 | JJ>

return 1;

} /
static const OSSL_ALGORITHM *

my_entropy_query_operation(void *provctx, int operation_id, int *no_cache) {
*no_cache = @;
switch (operation_id) {
case OSSL_OP_RAND:
returi my_entropy_query_operation_rand_array; |
default:
return NULL;
T
b

static const OSSL_DISPATCH my_entropy_rand_dispatch_table[] = {
{OSSL_FUNC_RAND_NEWCTX, (void (*)(void))my_entropy_newctx},
{OSSL_FUNC_RAND_FREECTX, (void (*)(void))my_entropy_freectx},
{OSSL_FUNC_RAND_INSTANTIATE, (void (*)(void))my_entropy_instantiate},
{OSSL_FUNC_RAND_UNINSTANTIATE, (void (*)(void))my_entropy_uninstantiate},
{OSSL_FUNC_RAND_GENERATE, (void (*)(void))my_entropy_generate},
{0SSL_FUNC_RAND_GETTABLE_CTX_PARAMS,

(void (*)(void))my_entropy_gettable_ctx_params},
{0SSL_FUNC_RAND_GET_CTX_PARAMS, (void (*)(void))my_entropy_get_ ctx_params},
{0SSL_FUNC_RAND_GET_SEED, (void (*)(voidf)my_entropy set _seed))
{OSSL_FUNC_RAND_CLEAR_SEED, (void (*)(void))my_entropy_clear_seed},

static const OSSL_ALGORITHM my_entropy_query operation_rand_array[] = { {8, NULL}};

{"myentropy", "provider=myentropy",|g¥ entropy rand dispatch table,lMULL},

{NULL, NULL, NULL, MNULL}};

10/9/25 Safelogic Proprietary and Confidential

Provider Entry Point

10/9/25

Definition:

typedef int (OSSL provider init fn) (const OSSL CORE HANDLE *handle,
const OSSL DISPATCH *in,
const OSSL DISPATCH **out,
void **provctx);

This function is expected to be present in any dynamically loadable provider
module. If this function doesn't exist in a module, that module is not an
OpenSSL provider module. The Core expects this function symbol to be
named: OSSL_provider_init

handle: pointer to opaque type OSSL_CORE_HANDLE. This can be used
together with some functions passed via “in” to query (core) data.

in: the array of functions that the Core passes to the provider.

out: the array of base functions that the provider passes back to the Core.
provctx: a provider side context object, optionally created if the provider
needs it.

Returns 1 on success, 0 otherwise.

SafelLogic Proprietary and Confidential

Safelogic

Provider Dispatch Tables
Safelogic

* Typical main dispatch table functions:
e OSSL_FUNC_PROVIDER_TEARDOWN
e OSSL_FUNC_PROVIDER_GETTABLE_PARAMS
* OSSL_FUNC_PROVIDER_GET_PARAMS
* OSSL_FUNC_PROVIDER_QUERY_OPERATION
* Etc.
* The query operation function returns further information about operations
supported by the provider, i. e.:
e OSSL_OP_DIGEST
e OSSL_OP_CIPHER
e OSSL_OP_RAND
* Etc.
* All operations supported by the Core can be found in
openssl/core_dispatch.h

10/9/25 Safelogic Proprietary and Confidential

OSSL Provider as Entropy Source

[my_entropy_query_operation]

/

[OSSL_OP_RAND]

[my_entropy_rand_array]

[“myentropy”]

\

[my_entropy_dispatch_table]—

10/9/25

Safelogic

v

0SSL_FUNC_RAND NEWCTX
0SSL_FUNC_RAND FREECTX
0SSL_FUNC RAND INSTANTIATE
0SSIL,_FUNC RAND UNINSTANTIATE
OSSL_FUNC_RAND GENERATE
0SSL_FUNC_RAND RESEED
0SSL_FUNC_RAND ENABLE LOCKING
0SSL_FUNC_ RAND LOCK
0SSL_FUNC_RAND UNLOCK
0SSL_FUNC RAND GETTABLE CTX PARAMS
OSSL_FUNC_RAND GET CTX PARAMS
0SSL_FUNC RAND VERIFY ZEROIZATION
OSSL_FUNC _RAND GET SEED
0SSL_FUNC_RAND CLEAR SEED

my entropy newctx

my entropy freectx

my entropy instantiate

my entropy uninstantiate

my entropy generate

my entropy reseed

my entropy enable locking

my entropy lock

my entropy unlock

my entropy gettable ctx params
my entropy get ctx params

my entropy verify zeroization
my entropy get seed

my entropy clear seed

Function my_entropy get seed realizes
GetEntropy conceptual interface

Safelogic Proprietary and Confidential

Example Simple Entropy Provider v

Source Code and Building Safelogic

static size_t my_entropy_get_seed(void *vseed, unsigned char **pout,
int entropy, size_t min_len, size_t max_len,
ossl_unused int prediction_resistance,
ossl_unused const unsigned char *adin,

$ cc -bundle -o lib/ossl-modules/myentropy.dylib \
? my entropy prov.c -I include -L lib -1 crypto

ossl_unused size_t adin_len) { $ nm -n -U lib/ossl-modules/myentropy.dylib
fprintf(stderr, "-- my_entropy_get_seed\n"); 00000000000039c4 T OSSL provider init (1)
si::?_t bytes_needed = entropy »>= @ ? ({(size_t)entropy) + 7) / 8 : @; 00000000000039F4 + _my egtropy qugry operation (3)
uns:.gned char *I?uf = OPENSSL_secure_malloc(bytes_needed); 0000000000003a44 t _my_entropy_gettagle params
// #include <unistd.h> S S — —
getentropy(buf, bytes_needed); 0000000000003a5c t my entropy get params
*pout = buf; 0000000000003b80 t my entropy newctx
return bytes_needed; 0000000000003bb8 t my entropy freectx
} 0000000000003be8 t my entropy instantiate
static void my_entropy_clear_seed(void *vseed, unsigned char *out, 0000000000003c10 t _my entropy uninstantiate
size_t outlen) { 0000000000003c24 t my entropy generate
OPENSSL_secure_clear_free(out, outlen); 0000000000003c54 t my entropy gettable ctx params
¥ 0000000000003c70 t my entropy get ctx params
0000000000003d88 t my entropy get seed (6)
0000000000003e4c t my entropy clear seed
0000000000004058 s my entropy dispatch table (2)
0000000000004098 s my entropy query operation rand array (4)
00000000000040d8 s my entropy rand dispatch table (5)
0000000000004178 s my entropy gettable ctx params array
0000000000004218 s my entropy gettable params array

10/9/25 Safelogic Proprietary and Confidential

Example Simple Entropy Provider v

Configuration and Usage SafeLogic
$ cat openssl.cnf $ setenv DYLD LIBRARY PATH lib
openssl conf = openssl init $ env | grep OPENSSL
OPENSSL CONF=openssl.cnf
[openssl init] OPENSSL_MODULES=lib/ossl—modules
providers = provider sect $ setenv DYLD LIBRARY PATH lib
random = random_ sect $ bin/openssl genrsa | head -5
-— my entropy get seed
[provider sect] —-=—==- BEGIN PRIVATE KEY-——---
default = default sect MIIEvVQIBADANBgkghkiGOwOBAQEFAASCBKcwggSjAgEAAOIBAQCh640IKmgsAz3x
myentropy = myentropy sect stSP8fvlnygstoZPX5kmDAFRWS zkmMEeWCtCEcCCFo4dQc5Abmwga9IJGeteS0+7A
bPPA4CcRTxsPmMhKSQ7SYOXsVdvoLy20KaT30LGFv7K5+9kQsWIT1YrNisEb/kNO5y
[default sect] LPwHUUzLKaxBytpscSu8xtQPiIQb5ft+UMDJhiKL7AUANHOSQrFigaY1nGlvmiWkO
activate =1

[myentropy sect]
activate =1

[random sect]
seed = myentropy

10/9/25 Safelogic Proprietary and Confidential

v
SP 800-90B Compliant Entropy Source

Safelogic
/ Entropy Source \

Noise Source
(non-physical
randomness) Conceptual

17 Interfaces

Digitizer
[(5 ling) }“““"‘—“““------------':GetNolse " Permitted to be available only in “test mode”.
sampling

!

-
: : b Health Tests
Raw Bitstream . Optional if the execution of the tests can be

(RCT & APT) > (rep.etltlon Cour.]t' S _'.I_!e_a_lt_h_T_e?t_ ‘: initiated in another manner.
L) \adaptlve proportion)

¥

()

Condiditioning

—>
& (SHA3-256)) Entropy Output i\tropy

10/9/25 Safelogic Proprietary and Confidential

llllllllll

CryptoComply Entropy Provider
- architecture

10/9/25

CPU Time Jitter RNG

Noise Source

/" Entropy Collection
Loop (SHA3-256 Loop) |

./ Variable FOR

A loop

FORI=110(256 «
safety_factor)ost
: J" ;
7] jent_read_entropy_sate{_)— b8 c e
v intemal
Time Delta S
SHA-3 auxdliary . SHA3 256-bit Random |
sequence " conditioning Number

Safelogic Proprietary and Confidential

GetEntropy

ov_seed_src_generate)

—

v

Safelogic

CryptoComply Entropy Provider
- |n|t|a||zat|0n SafeLogiC

* Gets required Core functions.

* Creates provider context.

* Gets provider configuration parameters.

* Performs internal integrity test:
* The same idea as in FIPS module.
* Opens and reads entropy source provider module file.
* Calculates HMAC and verifies its value with the value in

configuration file.
* Initializes internal/backend entropy source.
 Sets the main dispatch table (out).

10/9/25 Safelogic Proprietary and Confidential

CryptoComply FIPS module integration points
Safelogic

* Entropy Source provider needs to be registered and
available in the Core prior the FIPS provider loading (this
check is a part of OSSL_provider _init).

* Entropy provider (context) is used in provider seeding.c:

e oss|l _prov_get entropy
e ossl_prov_cleanup_entropy

10/9/25 Safelogic Proprietary and Confidential

CryptoComply Entropy Provider
as default entropy source

* If the entropy provider name is set as a seed parameter in
the random section configuration, the entropy provider is
used as a default and global entropy source in OpenSSL:

[openssl init]
providers = provider sect
random = random_sect

[provider sect]
cryptocomply-entropy = cryptocomply entropy sect

[random sect]
seed = CRYPTOCOMPLY-ENTROPY-SEED-SRC

10/9/25 Safelogic Proprietary and Confidential

Safelogic

CryptoComply Entropy Provider

- example configuration

openssl.cnf:
openssl conf = openssl init

.include cryptocomply-entropy.cnf
.include fipsmodule.cnf

[openssl init]
providers = provider sect
random random sect

[provider sect]

cryptocomply-entropy = cryptocomply entropy sect
default = default sect

fips = fips sect

[default sect]
activate =1

[random sect]
seed = CRYPTOCOMPLY-ENTROPY-SEED-SRC

10/9/25

cryptocomply-entropy.cnf:

[cryptocomply entropy sect]

activate =1
module-mac = A8:E6:C8:89:C4:B3:76:8D:2A4:E0:40...
force-internal-timer = 1

Safelogic Proprietary and Confidential

v

Safelogic

CryptoComply Entropy Provider

- In OpenSSL

$ openssl list -providers
Providers:
cryptocomply-entropy
name: CryptoComply Entropy Provider
version: 1.1.1
status: active
default
name: OpenSSL Default Provider
version: 3.5.2
status: active
fips
name: 140-3 FIPS Provider
version: 4.0.0-FIPS 140-3
status: active

10/9/25

$ openssl list -random-generators
Provided RNGs and seed sources:
CRNG-TEST @ fips

CRYPTOCOMPLY-ENTROPY-SEED-SRC @ cryptocomply-entropy

CTR-DRBG @ default
CTR-DRBG @ fips
HASH-DRBG @ default
HASH-DRBG @ fips
HMAC-DRBG @ default
HMAC-DRBG @ fips
SEED-SRC @ default
TEST-RAND @ default
TEST-RAND @ fips

Safelogic Proprietary and Confidential

v

Safelogic

CryptoComply Entropy Provider
- testing requirements

The entropy provider is tested for each accredited OE
The following tests have been performed:
* Entropy data quality
* Long data generation run (1000000 samples)
e Restart data generation (1000 x 1000 samples)
e ACVP tests of SHA-3 algorithm implementation
The provider is manually tested by verification of output of the following
commands:
* openssl list -providers
e openssl list random-generators
Additionally, the provider is tested by writing, compiling and running simple C
program that loads the provider and uses its raw noise generation function.

10/9/25 Safelogic Proprietary and Confidential

Safelogic

CryptoComply Entropy Provider ,
- validation documentation Safelogic

* Entropy Assessment Report (EAR)
* Raw datasets for the assessment
* Health-test documentation
e ESV server submission package
e Public Use Document (PUD)
e Data-collection attestations(s)
e OE list & operating bounds
e Conditioning analysis details
Optionally:
 Module linkage note (when part of a FIPS 140-3 module)

10/9/25 Safelogic Proprietary and Confidential

Finishing It Up
With NIST’s ESV

10/9/25 Safelogic Proprietary and Confidential

Project Timeline

Safelogic

¥,
Safelogic

Validation!!!

Implementation Certificate Number Validation Date

Safelogic, Inc. CryptoComply Entropy Provider E241 4/18/2025

Entropy Certificate #E241

Details

Implementation Name CryptoComply Entropy Provider

Standard SP 800-90B

Description CPU Jitter v3.6.0 as an OpenSSL-compatible provider

Version 111

Noise Source Classification Non-Physical

Reuse Status Reuse restricted to vendor

Operating Environments Vetted Conditioning Component CAVP Certificates

Bits of Entropy per Output: Full entropy. ¢ AlmaLinux 9 running on Intel Xeon E5-4667v4 * A6412 (SHA3-256)

Android 13 running on Google Tensor G2

* Debian 11 running on Intel Xeon E5-4667v4

FreeBSD 13 running on Intel Xeon E5-4667v4

* i0S 16 running on Apple A15 Bionic

* iPadOS 17 running on Apple M1

* macOS 13 (Ventura) running on Apple M2

* Oracle Solaris 11.4 running on Intel Xeon E5-4667v4

* Red Hat Enterprise Linux 9 running on Intel Xeon E5-4667v4
Rocky Linux 9 running on Intel Xeon E5-4667v4

SUSE Linux Enterprise Server 15 running on Intel Xeon E5-4667v4
Ubuntu 22.04 running on Intel Xeon E5-4667v4

Windows 10 running on Intel Xeon E5-4667v4

Windows 11 running on Intel Xeon E5-4667v4

Windows Server 2019 running on Intel Xeon E5-4667v4
Windows Server 2022 running on Intel Xeon E5-4667v4

Output Size in Bits: 256

10/9/25

Public Use Document

Vendor

Safelogic, Inc.
8300 Boone Blvd., Suite 500
Vienna, VA 22182
USA

SafeLogic Inside Sales
sales@safelogic.com
844-436-2797

10/9/25

Related Files

Public Use Document

Validation History
Date Lab
4/18/2025 Lightship Security Inc.

Safelogic Proprietary and Confidential

¥, Safelogic

Cryptography Simplified

SP 800-90B Non-Proprietary Public Use Document

CryptoComply Entropy Provider
Version: 1.1.1

Document Version: 1.2
Release Date: March 11, 2025

Prepared for:
SafelLogic, Inc.

Prepared by:

3Lightship Security

www.lightshipsec.com

Safelogic, Inc. 1/9

Special Thanks Safelogic
* Lightship Security

— Testing Lab
e Stephan Mueller

@tsec Security

Questions?

v
Safelogic

Cryptography Simplified

io/9/2 Safelog ic Proprietary and Conf idential

